Gustatory Receptor-Based Taste Sensors



A number of studies are dedicated to studying “electronic tongues” to imitate human taste, which can be applied at the food and beverage industries by using sensor arrays in previous decades.


Gustatory Cell Electronic Tongue Sour Taste Gustatory Receptor Bitter Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ciosek P, Wróblewski W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst. 2007;132(10):963–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Habara M, Ikezaki H, Toko K. Study of sweet taste evaluation using taste sensor with lipid/polymer membranes. Biosens Bioelectron. 2004;19(12):1559–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang P, Liu Q, Xu Y, Cai H, Li Y. Olfactory and taste cell sensor and its applications in biomedicine. Sens Actuators A Phys. 2007;139(1):131–8.CrossRefGoogle Scholar
  4. 4.
    Di Natale C, Paolesse R, Macagnano A, Mantini A, D’Amico A, Legin A, Lvova L, Rudnitskaya A, Vlasov Y. Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sens Actuators B: Chem. 2000;64(1):15–21.CrossRefGoogle Scholar
  5. 5.
    Tahara Y, Toko K. electronic tongues–a review. IEEE Sens J. 2013;13(8):3001–11.CrossRefGoogle Scholar
  6. 6.
    Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190(3):285–96.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.CrossRefPubMedGoogle Scholar
  8. 8.
    Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH. Human gustatory receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett. 2012;13(1):172–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu C, Du L, Zou L, Huang L, Wang P. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. Analyst. 2013;138(20):5989–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen P, Wang B, Cheng G, Wang P. Gustatory receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim U-K, Simons CT, Hong S, Park TH. Bioelectronic tongue using heterodimeric human gustatory receptor for the discrimination of sweeteners with human-like performance. ACS Nano. 2014;8(10):9781–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Bohin MC, Roland WS, Gruppen H, Gouka RJ, van der Hijden HT, Dekker P, Smit G, Vincken J-P. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter gustatory receptor assay and binding studies. J Agric Food Chem. 2013;61(42):10010–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu C, Du L, Zou L, Zhao L, Wang P. An ATP sensitive light addressable biosensor for extracellular monitoring of single gustatory receptor cell. Biomed Microdevices. 2012;14(6):1047–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu C, Du L, Hu L, Zhang W, Zhao L, Wang P. New acid biosensor for taste transduction based on extracellular recording of PKD channels. IEEE Sens J. 2012;12(11):3113–8.CrossRefGoogle Scholar
  15. 15.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid gustatory receptor. Nature. 2002;416(6877):199–202.CrossRefPubMedGoogle Scholar
  16. 16.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci. 2002;99(7):4692–6.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem. 2004;279(43):45068–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Temussi PA. Sweet, bitter and umami receptors: a complex relationship. Trends Biochem Sci. 2009;34(6):296–302.CrossRefPubMedGoogle Scholar
  19. 19.
    Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA III. Modeling the human PTC bitter-gustatory receptor interactions with bitter tastants. J Mol Model. 2006;12(6):931–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian gustatory receptors. Cell. 2000;100(6):693–702.CrossRefPubMedGoogle Scholar
  21. 21.
    Wu SV, Chen MC, Rozengurt E. Genomic organization, expression, and function of bitter gustatory receptors (T2R) in mouse and rat. Physiol Genomics. 2005;22(2):139–49.CrossRefPubMedGoogle Scholar
  22. 22.
    Miguet L, Zhang Z, Grigorov MG. Computational studies of ligand-receptor interactions in bitter gustatory receptors. J Recept Signal Transduct. 2006;26(5–6):611–30.CrossRefGoogle Scholar
  23. 23.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet gustatory receptors. Cell. 2001;106(3):381–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu C, Du L, Zou L, Zhao L, Huang L, Wang P. Recent advances in taste cell-and receptor-based biosensors. Sens Actuators B: Chem. 2014;201:75–85.Google Scholar
  25. 25.
    Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139(2):234–44.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Gilbertson TA, Damak S, Margolskee RF. The molecular physiology of taste transduction. Curr Opin Neurobiol. 2000;10(4):519–27.CrossRefPubMedGoogle Scholar
  27. 27.
    DeSimone JA, Lyall V. Gustatory receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue. American Journal of Physiology-Gastrointestinal and Liver. Physiology. 2006;291(6):G1005–10.Google Scholar
  28. 28.
    Dias AG, Rousseau D, Duizer L, Cockburn M, Chiu W, Nielsen D, El-Sohemy A. Genetic variation in putative salt gustatory receptors and salt taste perception in humans. Chem Senses. 2013;38(2):137–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim MJ, Son HJ, Kim Y, Kweon H-J, Suh B-C, Lyall V, Rhyu M-R. Selective activation of hTRPV1 by N-geranyl cyclopropylcarboxamide, an amiloride-insensitive salt taste enhancer. PLoS ONE. 2014;9(2):e89062.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Mummalaneni S, Qian J, Phan T-HT, Rhyu M-R, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PloS One. 2014;9(5):e98049.Google Scholar
  31. 31.
    Tate C. Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 2001;504(3):94–8.CrossRefPubMedGoogle Scholar
  32. 32.
    HyunáKim T, SeokáSong H, JunáJin H, HunáLee S, HyunáPark T. “Bioelectronic super-taster” device based on gustatory receptor-carbon nanotube hybrid structures. Lab Chip. 2011;11(13):2262–7.CrossRefGoogle Scholar
  33. 33.
    Nie Y, Hobbs JR, Vigues S, Olson WJ, Conn GL, Munger SD. Expression and purification of functional ligand–binding domains of T1R3 gustatory receptors. Chem Senses. 2006;31(6):505–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci. 1994;91(9):4024–8.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Sarramegna V, Talmont F, Demange P, Milon A. Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci CMLS. 2003;60(8):1529–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Conte C, Guarin E, Marcuz A, Andres-Barquin P. Functional expression of mammalian bitter gustatory receptors in Caenorhabditis elegans. Biochimie, 2006;88(7):801–6.Google Scholar
  37. 37.
    Chaudhari N, Landin AM, Roper SD. A metabotropic glutamate receptor variant functions as a gustatory receptor. Nat Neurosci. 2000;3(2):113–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Ishii S, Misaka T, Kishi M, Kaga T, Ishimaru Y, Abe K. Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour gustatory receptor. Biochem Biophys Res Commun. 2009;385(3):346–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Koizumi A, Tsuchiya A, Nakajima K-i, Ito K, Terada T, Shimizu-Ibuka A, Briand L, Asakura T, Misaka T, Abe K. Human sweet gustatory receptor mediates acid-induced sweetness of miraculin. Proc Natl Acad Sci. 2011;108(40):16819–24.Google Scholar
  40. 40.
    Zhang X, Sheng J, Huang L, Du L, Cai J, Cen P, Xu Z. High-level soluble expression of one model olfactory receptor (ODR-10) in Escherichia coli cell-free system. World J Microbiol Biotechnol. 2014;30(3):893–901.CrossRefPubMedGoogle Scholar
  41. 41.
    Raliou M, Grauso M, Hoffmann B, Schlegel–Le-Poupon C, Nespoulous C, Débat H, Belloir C, Wiencis A, Sigoillot M, Bano SP. Human genetic polymorphisms in T1R1 and T1R3 gustatory receptor subunits affect their function. Chem senses 2011;36(6):527–37.Google Scholar
  42. 42.
    Sarramegn V, Muller I, Milon A, Talmont F. Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell Mol Life Sci CMLS. 2006;63(10):1149–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004;1666(1):105–17.Google Scholar
  44. 44.
    Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials. 2012;33(6):1722–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour gustatory receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W. Members of RTP and REEP gene families influence functional bitter gustatory receptor expression. J Biol Chem. 2006;281(29):20650–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Burr MD, Nocker A, Camper AK. Biosensors for the Detection of E. coli O157: H7 in source and finished drinking water, in Handbook of water and wastewater systems protection. New York: Springer; 2011, p. 205–28.Google Scholar
  48. 48.
    Du L, Wu C, Peng H, Zou L, Zhao L, Huang L, Wang P. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens Actuators B: Chem. 2013;187:481–7.Google Scholar
  49. 49.
    Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-basedbiosensors. Biosens Bioelectron. 2013;42:570–80.Google Scholar
  50. 50.
    Marrazza G. piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–17.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today. 2011;6(2):131–54.CrossRefGoogle Scholar
  52. 52.
    Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh S-J. Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Methods. 2009;78(1):10–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Wu T-Z. A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron. 1999;14(1):9–18.CrossRefPubMedGoogle Scholar
  54. 54.
    Ernst OP, Bieri C, Vogel H, Hofmann KP. Intrinsic biophysical monitors of transducin activation: fluorescence, UV-visible spectroscopy, light scattering, and evanescent field techniques. Methods enzymol. 2000;315:471–89.Google Scholar
  55. 55.
    Stolowitz ML, Ahlem C, Hughes KA, Kaiser RJ, Kesicki EA, Li G, Lund KP, Torkelson SM, Wiley JP. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chem. 2001;12(2):229–39.CrossRefGoogle Scholar
  56. 56.
    Hassler BL, Worden RM. Versatile bioelectronic interfaces based on heterotrifunctional linking molecules. Biosens Bioelectron. 2006;21(11):2146–54.CrossRefPubMedGoogle Scholar
  57. 57.
    Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc. 2008;130(8):2380–1.CrossRefPubMedGoogle Scholar
  58. 58.
    Meyerhof W, Born S, Brockhoff A, Behrens M. Molecular biology of mammalian bitter gustatory receptors. Rev Flavour Fragr J. 2011;26(4):260–8.CrossRefGoogle Scholar
  59. 59.
    Wang J, Liu G, Lin Y. Nanotubes, nanowires, and nanocantilevers in biosensor development. Nanotechnol Life Sci. 2007.Google Scholar
  60. 60.
    Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science. 2001;294(5545):1317–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Star A, Gabriel J-CP, Bradley K, Grüner G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003;3(4):459–63.Google Scholar
  63. 63.
    O’Connor M, Kim SN, Killard AJ, Forster RJ, Smyth MR, Papadimitrakopoulos F, Rusling JF. Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst. 2004;129(12):1176–80.CrossRefPubMedGoogle Scholar
  64. 64.
    Martínez M, Tseng Y, Ormategui N, Loinaz I, Eritja R, Salvador J, Marco M, Bokor J. Carbon nanotubes field effect transistors biosensors. 2012.Google Scholar
  65. 65.
    Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J. Polypyrrole nanotubes conjugated with human olfactory receptors: high–performance transducers for FET–type bioelectronic noses. Angew Chem Int Ed. 2009;48(15):2755–8.CrossRefGoogle Scholar
  66. 66.
    Hou S, Wang S, Yu ZT, Zhu NQ, Liu K, Sun J, Lin WY, Shen CKF, Fang X, Tseng HR. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angew Chem. 2008;120(6):1088–91.CrossRefGoogle Scholar
  67. 67.
    Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive poly (3, 4–ethylenedioxythiophene) nanorods. Adv Mater. 2005;17(13):1616–20.CrossRefGoogle Scholar
  68. 68.
    Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79(2):782–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Takeda S, Sbagyo A, Sakoda Y, Ishii A, Sawamura M, Sueoka K, Kida H, Mukasa K, Matsumoto K. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen–antibody interaction. Biosens Bioelectron. 2005;21(1):201–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Lobez JM, Swager TM. Radiation detection: Resistivity responses in functional poly (olefin sulfone)/carbon nanotube composites. Angew Chem. 2010;122(1):99–102.CrossRefGoogle Scholar
  71. 71.
    Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S. Single–carbon–atomic–resolution detection of odorant molecules using a human olfactory receptor–based bioelectronic nose. Adv Mater. 2009;21(1):91–4.CrossRefGoogle Scholar
  72. 72.
    Rubenstein LA, Lanzara RG. Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struct: THEOCHEM. 1998;430:57–71.Google Scholar
  73. 73.
    Rubenstein LA, Zauhar RJ, Lanzara RG. Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation. J Mol Graph Model. 2006;25(4):396–409.CrossRefPubMedGoogle Scholar
  74. 74.
    Kim TH, Lee J, Hong S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C. 2009;113(45):19393–6.CrossRefGoogle Scholar
  75. 75.
    Zheng G, Gao XP, Lieber CM. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010;10(8):3179–83.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Park S-H, Raines RT. [16] Green fluorescent protein chimeras to probe protein-protein interactions. Methods Enzymol. 2000;328:251–61.Google Scholar
  77. 77.
    Olson ST, Halvorson H, Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991;266(10):6342–52.PubMedGoogle Scholar
  78. 78.
    Luong JH, Bouvrette P, Male KB. Developments and applications of biosensors in food analysis. Trends Biotechnol. 1997;15(9):369–77.CrossRefPubMedGoogle Scholar
  79. 79.
    Riul A Jr, Malmegrim R, Fonseca F, Mattoso L. An artificial taste sensor based on conducting polymers. Biosens Bioelectron. 2003;18(11):1365–9.CrossRefGoogle Scholar
  80. 80.
    Ji M, Su X, Su X, Chen Y, Huang W, Zhang J, Gao Z, Li C, Lu X. Identification of novel compounds for human bitter gustatory receptors. Chem Biol Drug Des 2014;84(1):63–74.Google Scholar
  81. 81.
    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M. The molecular receptive ranges of human TAS2R bitter gustatory receptors. Chem Senses. 2010;35(2):157–70.CrossRefPubMedGoogle Scholar
  82. 82.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter gustatory receptors. Cell. 2000;100(6):703–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, Behrens M, Lewtschenko T, Slack JP, Ward CD, Meyerhof W. Bitter gustatory receptors for saccharin and acesulfame K. J Neurosci. 2004;24(45):10260–5.CrossRefPubMedGoogle Scholar
  84. 84.
    Sainz E, Korley JN, Battey JF, Sullivan SL. Identification of a novel member of the T1R family of putative gustatory receptors. J Neurochem. 2001;77(3):896–903.CrossRefPubMedGoogle Scholar
  85. 85.
    Chen Z-X, Guo G-M, Deng S-P. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet gustatory receptor model. J Agric Food Chem. 2009;57(7):2945–54.CrossRefPubMedGoogle Scholar
  86. 86.
    Temussi P. The history of sweet taste: not exactly a piece of cake. J Mol Recognit. 2006;19(3):188–99.CrossRefPubMedGoogle Scholar
  87. 87.
    Frazier RA, Inns EL, Dossi N, Ames JM, Nursten HE. Development of a capillary electrophoresis method for the simultaneous analysis of artificial sweeteners, preservatives and colours in soft drinks. J Chromatogr A. 2000;876(1):213–20.CrossRefPubMedGoogle Scholar
  88. 88.
    Klein DA, Boudreau GS, Devlin MJ, Walsh BT. Artificial sweetener use among individuals with eating disorders. Int J Eat Disord. 2006;39(4):341–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.CrossRefPubMedGoogle Scholar
  90. 90.
    Mace OJ, Affleck J, Patel N, Kellett GL. Sweet gustatory receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007;582(1):379–92.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Li X. T1R receptors mediate mammalian sweet and umami taste. Am J clin Nutr. 2009;90(3):733S–7S.CrossRefPubMedGoogle Scholar
  92. 92.
    Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF. Detection of sweet and umami taste in the absence of gustatory receptor T1r3. Science. 2003;301(5634):850–3.CrossRefPubMedGoogle Scholar
  93. 93.
    Iwatsuki K, Uneyama H. Sense of taste in the gastrointestinal tract. J Pharmacol Sci. 2012;118(2):123–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Sigoillot M, Brockhoff A, Meyerhof W, Briand L. Sweet-taste-suppressing compounds: current knowledge and perspectives of application. Appl Microbiol Biotechnol. 2012;96(3):619–30.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations