Skip to main content

Gustatory Receptor-Based Taste Sensors

  • Chapter
  • First Online:
Book cover Bioinspired Smell and Taste Sensors
  • 1161 Accesses

Abstract

A number of studies are dedicated to studying “electronic tongues” to imitate human taste, which can be applied at the food and beverage industries by using sensor arrays in previous decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciosek P, Wróblewski W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst. 2007;132(10):963–78.

    Article  CAS  PubMed  Google Scholar 

  2. Habara M, Ikezaki H, Toko K. Study of sweet taste evaluation using taste sensor with lipid/polymer membranes. Biosens Bioelectron. 2004;19(12):1559–63.

    Article  CAS  PubMed  Google Scholar 

  3. Wang P, Liu Q, Xu Y, Cai H, Li Y. Olfactory and taste cell sensor and its applications in biomedicine. Sens Actuators A Phys. 2007;139(1):131–8.

    Article  CAS  Google Scholar 

  4. Di Natale C, Paolesse R, Macagnano A, Mantini A, D’Amico A, Legin A, Lvova L, Rudnitskaya A, Vlasov Y. Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sens Actuators B: Chem. 2000;64(1):15–21.

    Article  Google Scholar 

  5. Tahara Y, Toko K. electronic tongues–a review. IEEE Sens J. 2013;13(8):3001–11.

    Article  Google Scholar 

  6. Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190(3):285–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  8. Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH. Human gustatory receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett. 2012;13(1):172–8.

    Article  PubMed  Google Scholar 

  9. Wu C, Du L, Zou L, Huang L, Wang P. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. Analyst. 2013;138(20):5989–94.

    Article  CAS  PubMed  Google Scholar 

  10. Chen P, Wang B, Cheng G, Wang P. Gustatory receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  11. Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim U-K, Simons CT, Hong S, Park TH. Bioelectronic tongue using heterodimeric human gustatory receptor for the discrimination of sweeteners with human-like performance. ACS Nano. 2014;8(10):9781–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bohin MC, Roland WS, Gruppen H, Gouka RJ, van der Hijden HT, Dekker P, Smit G, Vincken J-P. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter gustatory receptor assay and binding studies. J Agric Food Chem. 2013;61(42):10010–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wu C, Du L, Zou L, Zhao L, Wang P. An ATP sensitive light addressable biosensor for extracellular monitoring of single gustatory receptor cell. Biomed Microdevices. 2012;14(6):1047–53.

    Article  CAS  PubMed  Google Scholar 

  14. Wu C, Du L, Hu L, Zhang W, Zhao L, Wang P. New acid biosensor for taste transduction based on extracellular recording of PKD channels. IEEE Sens J. 2012;12(11):3113–8.

    Article  CAS  Google Scholar 

  15. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid gustatory receptor. Nature. 2002;416(6877):199–202.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci. 2002;99(7):4692–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem. 2004;279(43):45068–75.

    Article  CAS  PubMed  Google Scholar 

  18. Temussi PA. Sweet, bitter and umami receptors: a complex relationship. Trends Biochem Sci. 2009;34(6):296–302.

    Article  CAS  PubMed  Google Scholar 

  19. Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA III. Modeling the human PTC bitter-gustatory receptor interactions with bitter tastants. J Mol Model. 2006;12(6):931–41.

    Article  CAS  PubMed  Google Scholar 

  20. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian gustatory receptors. Cell. 2000;100(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  21. Wu SV, Chen MC, Rozengurt E. Genomic organization, expression, and function of bitter gustatory receptors (T2R) in mouse and rat. Physiol Genomics. 2005;22(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  22. Miguet L, Zhang Z, Grigorov MG. Computational studies of ligand-receptor interactions in bitter gustatory receptors. J Recept Signal Transduct. 2006;26(5–6):611–30.

    Article  CAS  Google Scholar 

  23. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet gustatory receptors. Cell. 2001;106(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  24. Wu C, Du L, Zou L, Zhao L, Huang L, Wang P. Recent advances in taste cell-and receptor-based biosensors. Sens Actuators B: Chem. 2014;201:75–85.

    Google Scholar 

  25. Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139(2):234–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gilbertson TA, Damak S, Margolskee RF. The molecular physiology of taste transduction. Curr Opin Neurobiol. 2000;10(4):519–27.

    Article  CAS  PubMed  Google Scholar 

  27. DeSimone JA, Lyall V. Gustatory receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue. American Journal of Physiology-Gastrointestinal and Liver. Physiology. 2006;291(6):G1005–10.

    CAS  Google Scholar 

  28. Dias AG, Rousseau D, Duizer L, Cockburn M, Chiu W, Nielsen D, El-Sohemy A. Genetic variation in putative salt gustatory receptors and salt taste perception in humans. Chem Senses. 2013;38(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  29. Kim MJ, Son HJ, Kim Y, Kweon H-J, Suh B-C, Lyall V, Rhyu M-R. Selective activation of hTRPV1 by N-geranyl cyclopropylcarboxamide, an amiloride-insensitive salt taste enhancer. PLoS ONE. 2014;9(2):e89062.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mummalaneni S, Qian J, Phan T-HT, Rhyu M-R, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PloS One. 2014;9(5):e98049.

    Google Scholar 

  31. Tate C. Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 2001;504(3):94–8.

    Article  CAS  PubMed  Google Scholar 

  32. HyunáKim T, SeokáSong H, JunáJin H, HunáLee S, HyunáPark T. “Bioelectronic super-taster” device based on gustatory receptor-carbon nanotube hybrid structures. Lab Chip. 2011;11(13):2262–7.

    Article  Google Scholar 

  33. Nie Y, Hobbs JR, Vigues S, Olson WJ, Conn GL, Munger SD. Expression and purification of functional ligand–binding domains of T1R3 gustatory receptors. Chem Senses. 2006;31(6):505–13.

    Article  CAS  PubMed  Google Scholar 

  34. Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci. 1994;91(9):4024–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sarramegna V, Talmont F, Demange P, Milon A. Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci CMLS. 2003;60(8):1529–46.

    Article  CAS  PubMed  Google Scholar 

  36. Conte C, Guarin E, Marcuz A, Andres-Barquin P. Functional expression of mammalian bitter gustatory receptors in Caenorhabditis elegans. Biochimie, 2006;88(7):801–6.

    Google Scholar 

  37. Chaudhari N, Landin AM, Roper SD. A metabotropic glutamate receptor variant functions as a gustatory receptor. Nat Neurosci. 2000;3(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ishii S, Misaka T, Kishi M, Kaga T, Ishimaru Y, Abe K. Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour gustatory receptor. Biochem Biophys Res Commun. 2009;385(3):346–50.

    Article  CAS  PubMed  Google Scholar 

  39. Koizumi A, Tsuchiya A, Nakajima K-i, Ito K, Terada T, Shimizu-Ibuka A, Briand L, Asakura T, Misaka T, Abe K. Human sweet gustatory receptor mediates acid-induced sweetness of miraculin. Proc Natl Acad Sci. 2011;108(40):16819–24.

    Google Scholar 

  40. Zhang X, Sheng J, Huang L, Du L, Cai J, Cen P, Xu Z. High-level soluble expression of one model olfactory receptor (ODR-10) in Escherichia coli cell-free system. World J Microbiol Biotechnol. 2014;30(3):893–901.

    Article  CAS  PubMed  Google Scholar 

  41. Raliou M, Grauso M, Hoffmann B, Schlegel–Le-Poupon C, Nespoulous C, Débat H, Belloir C, Wiencis A, Sigoillot M, Bano SP. Human genetic polymorphisms in T1R1 and T1R3 gustatory receptor subunits affect their function. Chem senses 2011;36(6):527–37.

    Google Scholar 

  42. Sarramegn V, Muller I, Milon A, Talmont F. Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell Mol Life Sci CMLS. 2006;63(10):1149–64.

    Article  CAS  PubMed  Google Scholar 

  43. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004;1666(1):105–17.

    Google Scholar 

  44. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials. 2012;33(6):1722–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour gustatory receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W. Members of RTP and REEP gene families influence functional bitter gustatory receptor expression. J Biol Chem. 2006;281(29):20650–9.

    Article  CAS  PubMed  Google Scholar 

  47. Burr MD, Nocker A, Camper AK. Biosensors for the Detection of E. coli O157: H7 in source and finished drinking water, in Handbook of water and wastewater systems protection. New York: Springer; 2011, p. 205–28.

    Google Scholar 

  48. Du L, Wu C, Peng H, Zou L, Zhao L, Huang L, Wang P. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens Actuators B: Chem. 2013;187:481–7.

    Google Scholar 

  49. Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-basedbiosensors. Biosens Bioelectron. 2013;42:570–80.

    Google Scholar 

  50. Marrazza G. piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today. 2011;6(2):131–54.

    Article  CAS  Google Scholar 

  52. Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh S-J. Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Methods. 2009;78(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  53. Wu T-Z. A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron. 1999;14(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  54. Ernst OP, Bieri C, Vogel H, Hofmann KP. Intrinsic biophysical monitors of transducin activation: fluorescence, UV-visible spectroscopy, light scattering, and evanescent field techniques. Methods enzymol. 2000;315:471–89.

    Google Scholar 

  55. Stolowitz ML, Ahlem C, Hughes KA, Kaiser RJ, Kesicki EA, Li G, Lund KP, Torkelson SM, Wiley JP. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chem. 2001;12(2):229–39.

    Article  CAS  Google Scholar 

  56. Hassler BL, Worden RM. Versatile bioelectronic interfaces based on heterotrifunctional linking molecules. Biosens Bioelectron. 2006;21(11):2146–54.

    Article  CAS  PubMed  Google Scholar 

  57. Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc. 2008;130(8):2380–1.

    Article  CAS  PubMed  Google Scholar 

  58. Meyerhof W, Born S, Brockhoff A, Behrens M. Molecular biology of mammalian bitter gustatory receptors. Rev Flavour Fragr J. 2011;26(4):260–8.

    Article  CAS  Google Scholar 

  59. Wang J, Liu G, Lin Y. Nanotubes, nanowires, and nanocantilevers in biosensor development. Nanotechnol Life Sci. 2007.

    Google Scholar 

  60. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science. 2001;294(5545):1317–20.

    Article  CAS  PubMed  Google Scholar 

  61. Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289–92.

    Article  CAS  PubMed  Google Scholar 

  62. Star A, Gabriel J-CP, Bradley K, Grüner G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003;3(4):459–63.

    Google Scholar 

  63. O’Connor M, Kim SN, Killard AJ, Forster RJ, Smyth MR, Papadimitrakopoulos F, Rusling JF. Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst. 2004;129(12):1176–80.

    Article  PubMed  Google Scholar 

  64. Martínez M, Tseng Y, Ormategui N, Loinaz I, Eritja R, Salvador J, Marco M, Bokor J. Carbon nanotubes field effect transistors biosensors. 2012.

    Google Scholar 

  65. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J. Polypyrrole nanotubes conjugated with human olfactory receptors: high–performance transducers for FET–type bioelectronic noses. Angew Chem Int Ed. 2009;48(15):2755–8.

    Article  CAS  Google Scholar 

  66. Hou S, Wang S, Yu ZT, Zhu NQ, Liu K, Sun J, Lin WY, Shen CKF, Fang X, Tseng HR. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angew Chem. 2008;120(6):1088–91.

    Article  Google Scholar 

  67. Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive poly (3, 4–ethylenedioxythiophene) nanorods. Adv Mater. 2005;17(13):1616–20.

    Article  CAS  Google Scholar 

  68. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79(2):782–7.

    Article  CAS  PubMed  Google Scholar 

  69. Takeda S, Sbagyo A, Sakoda Y, Ishii A, Sawamura M, Sueoka K, Kida H, Mukasa K, Matsumoto K. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen–antibody interaction. Biosens Bioelectron. 2005;21(1):201–5.

    Article  CAS  PubMed  Google Scholar 

  70. Lobez JM, Swager TM. Radiation detection: Resistivity responses in functional poly (olefin sulfone)/carbon nanotube composites. Angew Chem. 2010;122(1):99–102.

    Article  Google Scholar 

  71. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S. Single–carbon–atomic–resolution detection of odorant molecules using a human olfactory receptor–based bioelectronic nose. Adv Mater. 2009;21(1):91–4.

    Article  CAS  Google Scholar 

  72. Rubenstein LA, Lanzara RG. Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struct: THEOCHEM. 1998;430:57–71.

    Google Scholar 

  73. Rubenstein LA, Zauhar RJ, Lanzara RG. Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation. J Mol Graph Model. 2006;25(4):396–409.

    Article  CAS  PubMed  Google Scholar 

  74. Kim TH, Lee J, Hong S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C. 2009;113(45):19393–6.

    Article  CAS  Google Scholar 

  75. Zheng G, Gao XP, Lieber CM. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010;10(8):3179–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Park S-H, Raines RT. [16] Green fluorescent protein chimeras to probe protein-protein interactions. Methods Enzymol. 2000;328:251–61.

    Google Scholar 

  77. Olson ST, Halvorson H, Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991;266(10):6342–52.

    CAS  PubMed  Google Scholar 

  78. Luong JH, Bouvrette P, Male KB. Developments and applications of biosensors in food analysis. Trends Biotechnol. 1997;15(9):369–77.

    Article  CAS  PubMed  Google Scholar 

  79. Riul A Jr, Malmegrim R, Fonseca F, Mattoso L. An artificial taste sensor based on conducting polymers. Biosens Bioelectron. 2003;18(11):1365–9.

    Article  CAS  Google Scholar 

  80. Ji M, Su X, Su X, Chen Y, Huang W, Zhang J, Gao Z, Li C, Lu X. Identification of novel compounds for human bitter gustatory receptors. Chem Biol Drug Des 2014;84(1):63–74.

    Google Scholar 

  81. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M. The molecular receptive ranges of human TAS2R bitter gustatory receptors. Chem Senses. 2010;35(2):157–70.

    Article  CAS  PubMed  Google Scholar 

  82. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter gustatory receptors. Cell. 2000;100(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  83. Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, Behrens M, Lewtschenko T, Slack JP, Ward CD, Meyerhof W. Bitter gustatory receptors for saccharin and acesulfame K. J Neurosci. 2004;24(45):10260–5.

    Article  CAS  PubMed  Google Scholar 

  84. Sainz E, Korley JN, Battey JF, Sullivan SL. Identification of a novel member of the T1R family of putative gustatory receptors. J Neurochem. 2001;77(3):896–903.

    Article  CAS  PubMed  Google Scholar 

  85. Chen Z-X, Guo G-M, Deng S-P. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet gustatory receptor model. J Agric Food Chem. 2009;57(7):2945–54.

    Article  CAS  PubMed  Google Scholar 

  86. Temussi P. The history of sweet taste: not exactly a piece of cake. J Mol Recognit. 2006;19(3):188–99.

    Article  CAS  PubMed  Google Scholar 

  87. Frazier RA, Inns EL, Dossi N, Ames JM, Nursten HE. Development of a capillary electrophoresis method for the simultaneous analysis of artificial sweeteners, preservatives and colours in soft drinks. J Chromatogr A. 2000;876(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  88. Klein DA, Boudreau GS, Devlin MJ, Walsh BT. Artificial sweetener use among individuals with eating disorders. Int J Eat Disord. 2006;39(4):341–5.

    Article  PubMed  Google Scholar 

  89. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  90. Mace OJ, Affleck J, Patel N, Kellett GL. Sweet gustatory receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007;582(1):379–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Li X. T1R receptors mediate mammalian sweet and umami taste. Am J clin Nutr. 2009;90(3):733S–7S.

    Article  CAS  PubMed  Google Scholar 

  92. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF. Detection of sweet and umami taste in the absence of gustatory receptor T1r3. Science. 2003;301(5634):850–3.

    Article  CAS  PubMed  Google Scholar 

  93. Iwatsuki K, Uneyama H. Sense of taste in the gastrointestinal tract. J Pharmacol Sci. 2012;118(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sigoillot M, Brockhoff A, Meyerhof W, Briand L. Sweet-taste-suppressing compounds: current knowledge and perspectives of application. Appl Microbiol Biotechnol. 2012;96(3):619–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zou, L., Wu, C., Du, L. (2015). Gustatory Receptor-Based Taste Sensors. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_12

Download citation

Publish with us

Policies and ethics