Skip to main content

Gustatoty Epithelium-Based Taste Sensors

  • Chapter
  • First Online:
  • 1112 Accesses

Abstract

For sensors mimicking biological taste sensory, many achievements have been made in liquid detection with special-sensitive lipid/polymer membrane [16]. Notably, a series of sensors were developed by Toko’s group to evaluate beer, tea, and food by discriminating several basic tastant s [7, 8]. However, the sensitivity and selectivity of detection using these electronic tongue s were lower than those of biological taste sensation, which mainly lies in the biological receptor structures and information coding mechanisms. Thus with advancements in tissue culture protocols, tissue-based biosensors were developed to mimic biological taste sense for analyzing the functional information of taste substances by treating living units as sensing elements [911]. Recently, Ozdener and Rawson proposed a method for primary culture of mammalian gustatory epithelium , which provides a useful model for molecular studies of the proliferation, differentiation, and physiological function of mammalian gustatory receptor cells [12]. The cultured tissue can keep taste sensitivity and electrophysiological activity , which can be recorded and analyzed in pattern recognitions. Although the cultured gustatory tissue loss the three-dimensional structure of the intact taste bud, the study opens a great starting for potential application of gustatory tissue in biosensor for taste detections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C. D’amico A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem. 2005;77(11):1965–83.

    Article  CAS  Google Scholar 

  2. Gallardo J, Alegret S, del Valle M. Application of a potentiometric as a classification tool in food analysis. Talanta. 2005;66(5):1303–9.

    Article  CAS  PubMed  Google Scholar 

  3. Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T. An in the dairy industry. Sens Actuators B: Chem. 2005;111299–304.

    Google Scholar 

  4. Gutierrez M, Alegret S, del Valle M. Potentiometric for the analysis of urea and alkaline ions in clinical samples. Biosens Bioelectron. 2007;22(9):2171–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gómez-Gutiérrez A, Garnacho E, Bayona JM, Albaigés J. Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environ Pollut. 2007;148(2):396–408.

    Article  PubMed  Google Scholar 

  6. Leonte I, Sehra G, Cole M, Hesketh P, Gardner JW. Taste sensors utilizing high-frequency SH-SAW devices. Sens Actuators B: Chem. 2006;118(1):349–55.

    Article  CAS  Google Scholar 

  7. Toko K, Habara M. Taste sensor. Chem Sens. 2005;30(suppl 1):i256–7.

    Article  Google Scholar 

  8. Tahara Y, Toko K. Electronic tongues–A review. Sens J IEEE. 2013;13(8):3001–11.

    Article  Google Scholar 

  9. Bousse L. Whole cell biosensors. Sens Actuators B: Chem. 1996;34(1):270–5.

    Article  CAS  Google Scholar 

  10. Rudolph AS, Reasor J. Cell and tissue based technologies for environmental detection and medical diagnostics. Biosens Bioelectron. 2001;16(7):429–31.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Wang P. Cell-based biosensors: principles and applications. 2009: Artech House.

    Google Scholar 

  12. Ozdener MH, Rawson NE. Primary culture of mammalian taste epithelium, in Epithelial Cell Culture Protocols. 2013, Springer. pp. 95–107.

    Google Scholar 

  13. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS. The cells and logic for mammalian taste detection. Nature. 2006;442(7105):934–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Liu Q, Zhang F, Zhang D, Hu N, Hsia KJ, Wang P. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens Bioelectron. 2013;43186–192.

    Google Scholar 

  15. Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS. A gustotopic map of taste qualities in the mammalian brain. Science. 2011;333(6047):1262–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  17. Scott K. Taste recognition: food for thought. Neuron. 2005;48(3):455–64.

    Article  CAS  PubMed  Google Scholar 

  18. El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem. 2008;283(19):12949–59.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Q, Zhang D, Zhang F, Zhao Y, Hsia KJ, Wang P. Biosensor recording of extracellular potentials in the taste epithelium for detection. Sens Actuators B: Chem. 2013;176497–504.

    Google Scholar 

  20. Bear MF, Connors BW, Paradiso MA. Neuroscience, vol. 2. 2007: Lippincott Williams & Wilkins.

    Google Scholar 

  21. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate taste receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ. The receptors and coding logic for taste. Nature. 2005;434(7030):225–9.

    Article  CAS  PubMed  Google Scholar 

  24. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  25. Matsunami H, Montmayeur J-P, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601–4.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of, and tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  27. Lin W, Kinnamon SC. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J Neurophysiol. 1999;82(5):2061–9.

    CAS  PubMed  Google Scholar 

  28. Chaudhari N, Yang H, Lamp C, Delay E, Cartford C, Than T, Roper S. The taste of monosodium glutamate: membrane receptors in taste buds. The Journal of Neuroscience. 1996;16(12):3817–26.

    CAS  PubMed  Google Scholar 

  29. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  30. Lindemann B. Receptors and transduction in taste. Nature. 2001;413(6852):219–25.

    Article  CAS  PubMed  Google Scholar 

  31. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100(1):59–74.

    Article  CAS  PubMed  Google Scholar 

  32. Xu T, Molnar P, Gregory C, Das M, Boland T, Hickman JJ. Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials. 2009;30(26):4377–83.

    Article  CAS  PubMed  Google Scholar 

  33. Ten Tusscher KH, Bernus O, Panfilov AV. Comparison of electrophysiological models for human ventricular cells and tissues. Prog Biophys Mol Biol. 2006;90(1):326–45.

    Article  PubMed  Google Scholar 

  34. Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G, D’Aniello C, Monshouwer-Kloots J, Goumans M-J, Wang Y-l, Feinberg AW. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro–Correlation between contraction force and electrophysiology. Biomaterials. 2015;51138–150.

    Google Scholar 

  35. Day B, Pomerleau F, Burmeister J, Huettl P, Gerhardt G. Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem. 2006;96(6):1626–35.

    Article  CAS  PubMed  Google Scholar 

  36. Gross GW. High throughput microelectrode array platforms for quantitative pharmacology, toxicology, and drug development using spontaneously active neural tissue. 2009. Springer Verlag.

    Google Scholar 

  37. Quintero JE, Pomerleau F, Huettl P, Johnson KW, Offord J, Gerhardt GA. Methodology for rapid measures of glutamate release in rat brain slices using ceramic-based microelectrode arrays: Basic characterization and drug pharmacology. Brain Res. 2011, 14011–9.

    Google Scholar 

  38. Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK. Application of micro-electrode arrays () as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology. 2011;32(1):158–68.

    Article  CAS  PubMed  Google Scholar 

  39. Robinson JT, Jorgolli M, Shalek AK, Yoon M-H, Gertner RS, Park H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol. 2012;7(3):180–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Thomas C, Springer P, Loeb G, Berwald-Netter Y, Okun L. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74(1):61–6.

    Article  PubMed  Google Scholar 

  41. Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8(2):83–94.

    Article  CAS  PubMed  Google Scholar 

  42. Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods. 1996;69(2):175–88.

    Article  CAS  PubMed  Google Scholar 

  43. Brown EN, Kass RE, Mitra PP. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci. 2004;7(5):456–461.

    Google Scholar 

  44. Fendyur A, Spira ME. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front Neuroeng. 2012;5.

    Google Scholar 

  45. Huys R, Braeken D, Wouters J, Loo J, Severi S, Vleugels F, Bartic C, Borghs G, Eberle W. A novel 16 k micro-nail CMOS-chip for in-vitro single-cell recording, stimulation and impedance measurements. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. 2010. IEEE.

    Google Scholar 

  46. Liu Q, Zhang F, Zhang D, Hu N, Wang H, Hsia KJ, Wang P. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2013;40(1):115–120.

    Google Scholar 

  47. Qiao L, Jiao L, Pang G, Xie J. A novel pungency biosensor prepared with fixing taste-bud tissue of rats. Biosens Bioelectron. 2015;68:454–61.

    Article  CAS  PubMed  Google Scholar 

  48. Miller RL, Stein MK, Loewy AD. Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience. 2011;193229–240.

    Google Scholar 

  49. Accolla R, Bathellier B, Petersen CC, Carleton A. Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci. 2007;27(6):1396–404.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang D, Zhang F, Zhang Q, Lu Y, Liu Q, Wang P. Umami evaluation in taste epithelium on microelectrode array by extracellular. Biochem Biophys Res Commun. 2013;438(2):334–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang F, Zhang Q, Zhang D, Lu Y, Liu Q, Wang P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens Bioelectron. 2014;54385–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, D., Liu, Q. (2015). Gustatoty Epithelium-Based Taste Sensors. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_11

Download citation

Publish with us

Policies and ethics