Taste Sensors with Gustatory Cells



With the fast advancements of cell-based biosensors in the past two decades, extensive amount of works have been performed in the development of gustatory cell-based taste sensors for chemical sensing that constitute an important class of cell-based biosensors [1–4].


Electrochemical Sensor Sensor Surface Gustatory Cell Extracellular Recording Taste Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. Development and application of cell-based biosensors. Ann Biomed Eng. 1999;27(6):697–711.CrossRefPubMedGoogle Scholar
  2. 2.
    Li Y, Liu QJ, Xu Y, Cai H, Qin LF, Wang LJ, Wang P. The development of taste transduction and taste chip technology. Chin Sci Bull. 2005;50(14):1415–23.CrossRefGoogle Scholar
  3. 3.
    Chen P, Zhang W, Zhou J, Wang P, Xiao L, Yang M. Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology. Prog Nat Sci. 2009;19(2):153–60.CrossRefGoogle Scholar
  4. 4.
    Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sens Actuators B-Chem. 2005;108(1–2):576–84.CrossRefGoogle Scholar
  5. 5.
    Ciosek P, Wroblewski W. Sensor arrays for liquid sensing—electronic tongue systems. Analyst. 2007;132(10):963–78.CrossRefPubMedGoogle Scholar
  6. 6.
    Tahara Y, Toko K. Electronic tongues-A review. IEEE Sens J. 2013;13(8):3001–11.CrossRefGoogle Scholar
  7. 7.
    Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int J Pharm. 2011;417(1–2):256–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu C, Du L, Zou L, Zhao L, Wang P. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed Microdevices. 2012;14(6):1047–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen P, Wang B, Cheng G, Wang P. Taste receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen P, Zhang W, Chen P, Zhou Z, Chen C, Hu J, Wang P. A serotonin-sensitive sensor for investigation of taste cell-to-cell communication. Biosens Bioelectron. 2011;26(6):3054–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu C, Du L, Mao L, Wang P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J Innovative Opt Health Sci. 2012;5(2).Google Scholar
  12. 12.
    Chen P, Liu X-d, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sens Actuators B-Chem. 2009;139(2):576–583.Google Scholar
  13. 13.
    Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sens Actuators B-Chem. 2008;131(1):24–8.CrossRefGoogle Scholar
  14. 14.
    Hui G-H, Mi S-S, Deng S-P. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens Bioelectron. 2012;35(1):429–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang T-H, Hui G-H, Deng S-P. A novel sweet taste cell-based sensor. Biosens Bioelectron. 2010;26(2):929–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 2007;26(3):657–67.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS. Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol. 2008;132(6):731–44.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Hayato R, Ohtubo Y, Yoshii K. Functional expression of ionotropic purinergic receptors on mouse taste bud cells. J Physiol Lond. 2007;584(2):473–88.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Huang Y-J, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA. 2007;104(15):6436–41.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, Iwata H. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens Bioelectron. 2003;18(12):1509–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu GX, Ye XS, Qin LF, Xu Y, Li Y, Li R, Wang P. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron. 2005;20(9):1757–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Lindemann B. Receptors and transduction in taste. Nature. 2001;413(6852):219–25.CrossRefPubMedGoogle Scholar
  23. 23.
    DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26(15):3971–80.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601.Google Scholar
  26. 26.
    Gilbertson TA, Boughter JD, Zhang H, Smith DV. Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.PubMedGoogle Scholar
  27. 27.
    Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates (vol 97, p 1, 2009). Odontology. 2009;97(2):120–120.Google Scholar
  28. 28.
    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005;310(5753):1495–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang YA, Maruyama Y, Stimac R, Roper SD. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol Lond. 2008;586(12):2903–12.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv-Eur J Physiol. 2007;454(5):759–76.CrossRefGoogle Scholar
  31. 31.
    Fromherz P. Semiconductor chips with ion channels, nerve cells and brain. Phys E-Low-Dimension Syst Nanostruct. 2003;16(1):24–34.CrossRefGoogle Scholar
  32. 32.
    Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003;377(3):486–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Reppel M, Igelmund P, Egert U, Juchelka F, Hescheler J, Drobinskaya I. Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem. 2007;19(5–6):213–24.PubMedGoogle Scholar
  34. 34.
    Ingebrandt S, Yeung CK, Staab W, Zetterer T, Offenhausser A. Backside contacted field effect transistor array for extracellular signal recording. Biosens Bioelectron. 2003;18(4):429–35.CrossRefPubMedGoogle Scholar
  35. 35.
    Fromherz P, Offenhausser A, Vetter T, Weis J. A neuron-silicon junction-a retzius cell of the leech on an insulated-gate field effect transistor. Science. 1991;252(5010):1290–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Schutz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE. An insect-based BioFET as a bioelectronic nose. Sens Actuators B-Chem. 2000;65(1–3):291–5.CrossRefGoogle Scholar
  37. 37.
    Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240(4856):1182–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Lucarelli F, Capponcelli S, Marrazza G, Sangiorgi L, Mascini M. Split hybridisation probes for electrochemical typing of single-nucleotide polymorphisms. Analyst. 2009;134(1):52–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Ricci F, Bonham AJ, Mason AC, Reich NO, Plaxco KW. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Anal Chem. 2009;81(4):1608–14.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Poehlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. Rapid, specific and sensitive electrochemical detection of food borne bacteria. Biosens Bioelectron. 2009;24(9):2766–71.CrossRefGoogle Scholar
  41. 41.
    Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc. 2006;128(26):8575–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei F, Wang J, Liao W, Zimmermann BG, Wong DT, Ho C-M. Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res 2008;36(11).Google Scholar
  43. 43.
    Zhang J, Wan Y, Wang L, Song S, Fan C. The electrochemical DNA biosensor. Prog Chem. 2007;19(10):1576–84.Google Scholar
  44. 44.
    Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835–41.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Ceriotti L, Ponti J, Colpo P, Sabbioni E, Rossi F. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron. 2007;22(12):3057–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH, Fey J, Salazar N. A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip. 2009;9(15):2176–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Fromherz P. Electrical interfacing of nerve cells and semiconductor chips. Chem Phys Chem. 2002;3(3):276–84.PubMedGoogle Scholar
  48. 48.
    Herness MS, Sun XD. Voltage-dependant sodium currents recorded from dissociated rat taste cells. J Membr Biol. 1995;146(1):73–84.CrossRefPubMedGoogle Scholar
  49. 49.
    Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A-Math Gen. 1981;14(11):L453–7.CrossRefGoogle Scholar
  50. 50.
    Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise-from ice ages to crayfish and SQUIDS. Nature. 1995;373(6509):33–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada S. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci. 2003;23(9):3616–22.PubMedGoogle Scholar
  52. 52.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA. 2006;103(33):12569–74.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature. 2001;413(6856):631–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJP, Zuker CS. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell. 1999;96(4):541–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Nelson G, Hoon MA, Chandrashekar J, Zhang YF, Ryba NJP, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106(3):381–90.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhao GQ, Zhang YF, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJP, Zuker CS. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.CrossRefPubMedGoogle Scholar
  57. 57.
    Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G, Ryba NJP, Zuker CS. An amino-acid taste receptor. Nature. 2002;416(6877):199–202.CrossRefPubMedGoogle Scholar
  58. 58.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.CrossRefPubMedGoogle Scholar
  59. 59.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng LX, Guo W, Zuker CS, Ryba NJP. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.CrossRefPubMedGoogle Scholar
  60. 60.
    Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJP. The receptors and coding logic for bitter taste (vol 434, 225, 2005). Nature. 2007; 446(7133):342–342.Google Scholar
  62. 62.
    Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci. 2006;7(6):423–36.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Burnstock G. Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol R. 2008;60(1):12–20.Google Scholar
  64. 64.
    Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32(1):19–29.CrossRefPubMedGoogle Scholar
  65. 65.
    Kaya N, Shen TS, Lu SG, Zhao FL, Herness S. A paracrine signaling role for serotoninin rat taste buds: expression and localization of serotonin receptor subtypes. Am J Physiol-Regul Integr Comp Physiol. 2004;286(4):R649–58.CrossRefPubMedGoogle Scholar
  66. 66.
    Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu DQ, Roper SD. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 2005;25(4):843–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc. 2008;130(8):2380–1.CrossRefPubMedGoogle Scholar
  68. 68.
    Zancanaro C, Sbarbati A, Bolner A, Accordini C, Piemonte G, Osculati F. Biogenic-amines in the taste organ. Chem Senses. 1995;20(3):329–35.CrossRefPubMedGoogle Scholar
  69. 69.
    Katsu T, Hirodo H. Biogenic amine-sensitive membrane electrodes using the hydrogen bond-forming ability of solvent mediators. Anal Sci. 2000;16(8):789–93.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations