Skip to main content

Taste Sensors with Gustatory Cells

  • Chapter
  • First Online:
Bioinspired Smell and Taste Sensors

Abstract

With the fast advancements of cell-based biosensors in the past two decades, extensive amount of works have been performed in the development of gustatory cell-based taste sensors for chemical sensing that constitute an important class of cell-based biosensors [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. Development and application of cell-based biosensors. Ann Biomed Eng. 1999;27(6):697–711.

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Liu QJ, Xu Y, Cai H, Qin LF, Wang LJ, Wang P. The development of taste transduction and taste chip technology. Chin Sci Bull. 2005;50(14):1415–23.

    Article  CAS  Google Scholar 

  3. Chen P, Zhang W, Zhou J, Wang P, Xiao L, Yang M. Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology. Prog Nat Sci. 2009;19(2):153–60.

    Article  Google Scholar 

  4. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sens Actuators B-Chem. 2005;108(1–2):576–84.

    Article  CAS  Google Scholar 

  5. Ciosek P, Wroblewski W. Sensor arrays for liquid sensing—electronic tongue systems. Analyst. 2007;132(10):963–78.

    Article  CAS  PubMed  Google Scholar 

  6. Tahara Y, Toko K. Electronic tongues-A review. IEEE Sens J. 2013;13(8):3001–11.

    Article  Google Scholar 

  7. Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int J Pharm. 2011;417(1–2):256–71.

    Article  CAS  PubMed  Google Scholar 

  8. Wu C, Du L, Zou L, Zhao L, Wang P. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed Microdevices. 2012;14(6):1047–53.

    Article  CAS  PubMed  Google Scholar 

  9. Chen P, Wang B, Cheng G, Wang P. Taste receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  10. Chen P, Zhang W, Chen P, Zhou Z, Chen C, Hu J, Wang P. A serotonin-sensitive sensor for investigation of taste cell-to-cell communication. Biosens Bioelectron. 2011;26(6):3054–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Du L, Mao L, Wang P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J Innovative Opt Health Sci. 2012;5(2).

    Google Scholar 

  12. Chen P, Liu X-d, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sens Actuators B-Chem. 2009;139(2):576–583.

    Google Scholar 

  13. Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sens Actuators B-Chem. 2008;131(1):24–8.

    Article  CAS  Google Scholar 

  14. Hui G-H, Mi S-S, Deng S-P. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens Bioelectron. 2012;35(1):429–38.

    Article  CAS  PubMed  Google Scholar 

  15. Wang T-H, Hui G-H, Deng S-P. A novel sweet taste cell-based sensor. Biosens Bioelectron. 2010;26(2):929–34.

    Article  CAS  PubMed  Google Scholar 

  16. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 2007;26(3):657–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS. Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol. 2008;132(6):731–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hayato R, Ohtubo Y, Yoshii K. Functional expression of ionotropic purinergic receptors on mouse taste bud cells. J Physiol Lond. 2007;584(2):473–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang Y-J, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA. 2007;104(15):6436–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, Iwata H. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens Bioelectron. 2003;18(12):1509–14.

    Article  CAS  PubMed  Google Scholar 

  21. Xu GX, Ye XS, Qin LF, Xu Y, Li Y, Li R, Wang P. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron. 2005;20(9):1757–63.

    Article  CAS  PubMed  Google Scholar 

  22. Lindemann B. Receptors and transduction in taste. Nature. 2001;413(6852):219–25.

    Article  CAS  PubMed  Google Scholar 

  23. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26(15):3971–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  25. Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601.

    Google Scholar 

  26. Gilbertson TA, Boughter JD, Zhang H, Smith DV. Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.

    CAS  PubMed  Google Scholar 

  27. Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates (vol 97, p 1, 2009). Odontology. 2009;97(2):120–120.

    Google Scholar 

  28. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005;310(5753):1495–9.

    Article  CAS  PubMed  Google Scholar 

  29. Huang YA, Maruyama Y, Stimac R, Roper SD. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol Lond. 2008;586(12):2903–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Archiv-Eur J Physiol. 2007;454(5):759–76.

    Article  CAS  Google Scholar 

  31. Fromherz P. Semiconductor chips with ion channels, nerve cells and brain. Phys E-Low-Dimension Syst Nanostruct. 2003;16(1):24–34.

    Article  Google Scholar 

  32. Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem. 2003;377(3):486–95.

    Article  CAS  PubMed  Google Scholar 

  33. Reppel M, Igelmund P, Egert U, Juchelka F, Hescheler J, Drobinskaya I. Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem. 2007;19(5–6):213–24.

    CAS  PubMed  Google Scholar 

  34. Ingebrandt S, Yeung CK, Staab W, Zetterer T, Offenhausser A. Backside contacted field effect transistor array for extracellular signal recording. Biosens Bioelectron. 2003;18(4):429–35.

    Article  CAS  PubMed  Google Scholar 

  35. Fromherz P, Offenhausser A, Vetter T, Weis J. A neuron-silicon junction-a retzius cell of the leech on an insulated-gate field effect transistor. Science. 1991;252(5010):1290–3.

    Article  CAS  PubMed  Google Scholar 

  36. Schutz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE. An insect-based BioFET as a bioelectronic nose. Sens Actuators B-Chem. 2000;65(1–3):291–5.

    Article  CAS  Google Scholar 

  37. Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240(4856):1182–5.

    Article  CAS  PubMed  Google Scholar 

  38. Lucarelli F, Capponcelli S, Marrazza G, Sangiorgi L, Mascini M. Split hybridisation probes for electrochemical typing of single-nucleotide polymorphisms. Analyst. 2009;134(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ricci F, Bonham AJ, Mason AC, Reich NO, Plaxco KW. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Anal Chem. 2009;81(4):1608–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Poehlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. Rapid, specific and sensitive electrochemical detection of food borne bacteria. Biosens Bioelectron. 2009;24(9):2766–71.

    Article  CAS  Google Scholar 

  41. Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc. 2006;128(26):8575–80.

    Article  CAS  PubMed  Google Scholar 

  42. Wei F, Wang J, Liao W, Zimmermann BG, Wong DT, Ho C-M. Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res 2008;36(11).

    Google Scholar 

  43. Zhang J, Wan Y, Wang L, Song S, Fan C. The electrochemical DNA biosensor. Prog Chem. 2007;19(10):1576–84.

    CAS  Google Scholar 

  44. Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ceriotti L, Ponti J, Colpo P, Sabbioni E, Rossi F. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron. 2007;22(12):3057–63.

    Article  CAS  PubMed  Google Scholar 

  46. Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH, Fey J, Salazar N. A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip. 2009;9(15):2176–83.

    Article  CAS  PubMed  Google Scholar 

  47. Fromherz P. Electrical interfacing of nerve cells and semiconductor chips. Chem Phys Chem. 2002;3(3):276–84.

    CAS  PubMed  Google Scholar 

  48. Herness MS, Sun XD. Voltage-dependant sodium currents recorded from dissociated rat taste cells. J Membr Biol. 1995;146(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  49. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A-Math Gen. 1981;14(11):L453–7.

    Article  Google Scholar 

  50. Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise-from ice ages to crayfish and SQUIDS. Nature. 1995;373(6509):33–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada S. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci. 2003;23(9):3616–22.

    CAS  PubMed  Google Scholar 

  52. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA. 2006;103(33):12569–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature. 2001;413(6856):631–5.

    Article  CAS  PubMed  Google Scholar 

  54. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJP, Zuker CS. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell. 1999;96(4):541–51.

    Article  CAS  PubMed  Google Scholar 

  55. Nelson G, Hoon MA, Chandrashekar J, Zhang YF, Ryba NJP, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao GQ, Zhang YF, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJP, Zuker CS. The receptors for mammalian sweet and umami taste. Cell. 2003;115(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  57. Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G, Ryba NJP, Zuker CS. An amino-acid taste receptor. Nature. 2002;416(6877):199–202.

    Article  CAS  PubMed  Google Scholar 

  58. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  59. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng LX, Guo W, Zuker CS, Ryba NJP. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  60. Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  61. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJP. The receptors and coding logic for bitter taste (vol 434, 225, 2005). Nature. 2007; 446(7133):342–342.

    Google Scholar 

  62. Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci. 2006;7(6):423–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Burnstock G. Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol R. 2008;60(1):12–20.

    CAS  Google Scholar 

  64. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  65. Kaya N, Shen TS, Lu SG, Zhao FL, Herness S. A paracrine signaling role for serotoninin rat taste buds: expression and localization of serotonin receptor subtypes. Am J Physiol-Regul Integr Comp Physiol. 2004;286(4):R649–58.

    Article  CAS  PubMed  Google Scholar 

  66. Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu DQ, Roper SD. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 2005;25(4):843–7.

    Article  CAS  PubMed  Google Scholar 

  67. Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc. 2008;130(8):2380–1.

    Article  CAS  PubMed  Google Scholar 

  68. Zancanaro C, Sbarbati A, Bolner A, Accordini C, Piemonte G, Osculati F. Biogenic-amines in the taste organ. Chem Senses. 1995;20(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  69. Katsu T, Hirodo H. Biogenic amine-sensitive membrane electrodes using the hydrogen bond-forming ability of solvent mediators. Anal Sci. 2000;16(8):789–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, C., Du, L., Hu, L. (2015). Taste Sensors with Gustatory Cells. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_10

Download citation

Publish with us

Policies and ethics