Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Bioinspired Smell and Taste Sensors
  • 1141 Accesses

Abstract

Biological olfactory and taste systems are natural chemical sensing systems that are crucial for almost all the creatures to sensing the chemical signals for various purposes such as survival, feeding, and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ache BW, Young JM. Olfaction: Diverse species, conserved principles. Neuron. 2005;48(3):417–30.

    Article  CAS  PubMed  Google Scholar 

  2. Buck L, Axel R. A novel multigene family may encode odorant receptors-a molecular-basis for odor recognition. Cell. 1991;65(1):175–87.

    Article  CAS  PubMed  Google Scholar 

  3. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  4. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26(15):3971–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dryer L, Berghard A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol Sci. 1999;20(10):413–7.

    Article  CAS  PubMed  Google Scholar 

  6. Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413(6852):211–8.

    Article  CAS  PubMed  Google Scholar 

  7. Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 2000;404(6778):601–4.

    Article  CAS  PubMed  Google Scholar 

  8. Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT. Centre-surround inhibition among olfactory bulb glomeruli. Nature. 2003;426(6967):623–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kay LM, Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol. 2006;17(4):433–42.

    Article  PubMed  Google Scholar 

  10. Leon M, Johnson BA. Olfactory coding in the mammalian olfactory bulb. Brain Res Rev. 2003;42(1):23–32.

    Article  PubMed  Google Scholar 

  11. Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron. 2013:42570–580.

    Google Scholar 

  12. Li Y, Liu QJ, Xu Y, Cai H, Qin LF, Wang LJ, Wang P. The development of taste transduction and taste chip technology. Chin Sci Bull. 2005;50(14):1415–23.

    Article  CAS  Google Scholar 

  13. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sensors Actuators B-Chem. 2005;108(1–2):576–84.

    Article  CAS  Google Scholar 

  14. Wu C, Du L, Zou L, Zhao L, Huang L, Wang P. Recent advances in taste cell- and receptor-based biosensors. Sensors Actuators B-Chem. 2014:20175–85.

    Google Scholar 

  15. Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull. 2007;52(14):1886–96.

    Article  CAS  Google Scholar 

  16. Freeman WJ. Simulation of chaotic EEG patterns with a dynamic-model of the olfactory system. Biol Cybern. 1987;56(2–3):139–50.

    Article  CAS  PubMed  Google Scholar 

  17. Gardner RJ. Lipid solubility and the sourness of acids-implications for models of the acid taste receptor. Chem Senses. 1980;5(3):185–94.

    Article  CAS  Google Scholar 

  18. Iiyama S, Toko K, Yamafuji K. Effect of bitter substances on a model membrane system of taste reception. Agric Biol Chem. 1986;50(11):2709–14.

    Article  CAS  Google Scholar 

  19. Ivarsson P, Kikkawa Y, Winquist F, Krantz-Rulcker C, Hojer NE, Hayashi K, Toko K, Lundstrom I. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor. Anal Chim Acta. 2001;449(1–2):59–68.

    Article  CAS  Google Scholar 

  20. Toko K. Taste sensor. Sensors Actuators B-Chem. 2000;64(1–3):205–15.

    Article  CAS  Google Scholar 

  21. Stephan A, Bucking M, Steinhart H. Novel analytical tools for food flavours. Food Res Int. 2000;33(3–4):199–209.

    Article  CAS  Google Scholar 

  22. Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi K, Yamanaka M, Toko K, Yamafuji K. Multichannel taste sensor using lipid-membranes. Sensors Actuators B-Chem. 1990;2(3):205–13.

    Article  CAS  Google Scholar 

  24. Legin AV, Rudnitskaya AM, Vlasov YG, Di Natale C, D’Amico A. The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors Actuators B-Chem. 1999;58(1–3):464–8.

    Article  CAS  Google Scholar 

  25. Liu Q, Zhang F, Zhang D, Hu N, Hsia KJ, Wang P. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens Bioelectron. 2013:43186–192.

    Google Scholar 

  26. Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.

    Article  PubMed  Google Scholar 

  27. Lee SH, Park TH. Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng. 2010;15(1):22–9.

    Article  CAS  Google Scholar 

  28. Schoning MJ, Schroth P, Schutz S. The use of insect chemoreceptors for the assembly of biosensors based on semiconductor field-effect transistors. Electroanalysis. 2000;12(9):645–52.

    Article  CAS  Google Scholar 

  29. Schutz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE. An insect-based BioFET as a bioelectronic nose. Sensors Actuators B-Chem. 2000;65(1–3):291–5.

    Article  CAS  Google Scholar 

  30. Sankaran S, Panigrahi S, Mallik S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron. 2011;26(7):3103–9.

    Article  CAS  PubMed  Google Scholar 

  31. Corcelli A, Lobasso S, Lopalco P, Dibattista M, Araneda R, Peterlin Z, Firestein S. Detection of explosives by olfactory sensory neurons. J Hazard Mater. 2010;175(1–3):1096–100.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall B, Warr CG, de Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses. 2010;35(7):613–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005;5(9):1774–8.

    Article  CAS  PubMed  Google Scholar 

  34. White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. PLoS Biol. 2008;6(1):30–6.

    Article  CAS  Google Scholar 

  35. Hui G, Mi S, Deng S. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens Bioelectron. 2012;35(1):429–38.

    Article  CAS  PubMed  Google Scholar 

  36. Wang T, Hui G, Deng S. A novel sweet taste cell-based sensor. Biosens Bioelectron. 2010;26(2):929–34.

    Article  CAS  PubMed  Google Scholar 

  37. Wu C, Du L, Mao L, Wang P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J Innov Opt Health Sci. 2012;5(2).

    Google Scholar 

  38. Wu C, Du L, Zou L, Huang L, Wang P. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. Analyst. 2013;138(20):5989–94.

    Article  CAS  PubMed  Google Scholar 

  39. Wu C, Chen P, Yu H, Liu Q, Zong X, Cai H, Wang P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens Bioelectron. 2009;24(5):1498–502.

    Article  CAS  PubMed  Google Scholar 

  40. Wu C, Chen P, Yuan Q, Wang P. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection. J Zhejiang Univ-Sci B. 2009;10(4):285–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chen P, Liu X, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sensors Actuators B-Chem. 2009;139(2):576–83.

    Article  CAS  Google Scholar 

  42. Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sensors Actuators B-Chem. 2008;131(1):24–8.

    Article  CAS  Google Scholar 

  43. Chen P, Wang B, Cheng G, Wang P. Taste receptor cell-based biosensor for taste specific recognition based on temporal firing. Biosens Bioelectron. 2009;25(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  44. Chen P, Zhang W, Chen P, Zhou Z, Chen C, Hu J, Wang P. A serotonin-sensitive sensor for investigation of taste cell-to-cell communication. Biosens Bioelectron. 2011;26(6):3054–8.

    Article  CAS  PubMed  Google Scholar 

  45. Du L, Zou L, Zhao L, Huang L, Wang P, Wu C. Label-free functional assays of chemical receptors using a bioengineered cell-based biosensor with localized extracellular acidification measurement. Biosens Bioelectron. 2014:54623–627.

    Google Scholar 

  46. Pauling L, Robinson AB, Teranish R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA. 1971;68(10):2374–000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347(1–2):25–39.

    Article  CAS  PubMed  Google Scholar 

  48. Minna J, Schiller J, eds. Harrison’s principles of internal medicine. 17th ed. Library Journal, vol. 133. New York: McGraw-Hill; 2008. pp. 551–562.

    Google Scholar 

  49. Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet. 1999;353(9168):1930–3.

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Cao MF, Li Y, Hu WJ, Wang P, Ying KJ, Pan HM. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol. 2005;16(8):1535–46.

    Article  CAS  Google Scholar 

  52. Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-coated nanosensors for breath analysis. IEEE Sens J. 2010;10(1):159–66.

    Article  CAS  Google Scholar 

  53. Strauch M, Luedke A, Muench D, Laudes T, Galizia CG, Martinelli E, Lavra L, Paolesse R, Ulivieri A, Catini A, Capuano R, Di Natale C. More than apples and oranges—detecting cancer with a fruit fly’s antenna. Sci Rep. 2014;4(3576):1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, P., Liu, Q., Wu, C., Hsia, K.J. (2015). Introduction. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_1

Download citation

Publish with us

Policies and ethics