Skip to main content

Hydrogen Production from Water and Air Through Solid Oxide Electrolysis

  • Chapter
Production of Hydrogen from Renewable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 5))

Abstract

High-temperature solid oxide electrolyzers (SOEs) or solid oxide electrolysis cells (SOECs) are electrochemical devices for the efficient production of hydrogen or syngas as feedstock for liquid fuels such as methanol, gasoline, and diesel using electricity and unused heat from nuclear plants, steelmakers, or renewable energy sources. This chapter aims to review the principles, status, and progress in the electrochemical hydrogen production process by water electrolysis such as low-temperature alkaline electrolysis cells and polymer exchange membrane electrolysis cells with particular emphasis on the new electrolysis technologies of high-temperature SOECs. The material and material degradation issues associated with high-temperature electrolysis processes are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrogen Energy. 2013;38:2039–61.

    Article  CAS  Google Scholar 

  2. Jensen SH, Larsen PH, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy. 2007;32:3253–7.

    Article  CAS  Google Scholar 

  3. Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proc IEEE. 2012;100:811.

    Article  Google Scholar 

  4. Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy. 2008;33:4013–29.

    Article  CAS  Google Scholar 

  5. Manage MN, Hodgson D, Milligan N, et al. A techno-economic appraisal of hydrogen generation and the case for solid oxide electrolyser cells. Int J Hydrogen Energy. 2011;36:5782–96.

    Article  CAS  Google Scholar 

  6. Christopher K, Dimitrios R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci. 2012;5:6640–51.

    Article  CAS  Google Scholar 

  7. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C-Photochem Rev. 2010;11:179–209.

    Article  CAS  Google Scholar 

  8. Jiang SP, Wang X. Chapter 5. Fuel cells: advances and challenges. In: Kharton VV, editor. Handbook of solid state electrochemistry. Berlin:Wiley-VCH. 2011. p. 179–264.

    Google Scholar 

  9. Trasatti S. Water electrolysis: who first? J Electroanal Chem. 1999;476:90–1.

    Article  CAS  Google Scholar 

  10. Carmo M, Fritz DL, Merge J, et al. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy. 2013;38:4901–34.

    Article  CAS  Google Scholar 

  11. Wang MY, Wang Z, Gong XZ, et al. The intensification technologies to water electrolysis for hydrogen production – a review. Renew Sustain Energy Rev. 2014;29:573–88.

    Article  CAS  Google Scholar 

  12. Bierschenk DM, Wilson JR, Barnett SA. High efficiency electrical energy storage using a methane-oxygen solid oxide cell. Energy Environ Sci. 2011;4:944–51.

    Article  CAS  Google Scholar 

  13. Xie K, Zhang Y, Meng G, et al. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ Sci. 2011;4:2218–22.

    Article  CAS  Google Scholar 

  14. Hauch A, Ebbesen SD, Jensen SH, et al. Highly efficient high temperature electrolysis. J Mater Chem. 2008;18:2331–40.

    Article  CAS  Google Scholar 

  15. Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev. 2014;43:8255–70.

    Article  CAS  PubMed  Google Scholar 

  16. Ni M, Leung MKH, Leung DYC. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrogen Energy. 2008;33:2337–54.

    Article  CAS  Google Scholar 

  17. Yildiz B, Kazimi MS. Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy. 2006;31:77–92.

    Article  CAS  Google Scholar 

  18. Kasai S. Hydrogen electrical energy storage by high-temperature steam electrolysis for next-millennium energy security. Int J Hydrogen Energy. 2014;39:21358–70.

    Article  CAS  Google Scholar 

  19. Ebbesen SD, Mogensen M. Exceptional durability of solid oxide cells. Electrochem Solid State Lett. 2010;13:D106–8.

    Article  CAS  Google Scholar 

  20. Brisse A, Schefold J, International JP. High temperature electrolysis at EIFER, main achievements at cell and stack level. WHEC 2012 conference proceedings – 19th World Hydrogen Energy conference. Energy Procedia. 2012;29:53–63.

    Google Scholar 

  21. Kaithwas A, Prasad M, Kulshreshtha A, et al. Industrial wastes derived solid adsorbents for CO2 capture: a mini review. Chem Eng Res Des. 2012;90:1632–41.

    Article  CAS  Google Scholar 

  22. Zhan ZL, Zhao L. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J Power Sources. 2010;195:7250–4.

    Article  CAS  Google Scholar 

  23. Li YX, Zhou JE, Dong DH, et al. Composite fuel electrode La0.2Sr0.8TiO3-δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys Chem Chem Phys. 2012;14:15547–53.

    Article  CAS  PubMed  Google Scholar 

  24. Graves C, Ebbesen SD, Mogensen M, et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev. 2011;15:1–23.

    Article  CAS  Google Scholar 

  25. Graves C, Ebbesen SD, Mogensen M. Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ion. 2011;192:398–403.

    Article  CAS  Google Scholar 

  26. Yu B, Zhang W, Xu J, et al. Preparation and electrochemical behavior of dense YSZ film for SOEC. Int J Hydrogen Energy. 2012;37:12074–80.

    Article  CAS  Google Scholar 

  27. Laguna-Bercero MA, Skinner SJ, Kilner JA. Performance of solid oxide electrolysis cells based on scandia stabilised zirconia. J Power Sources. 2009;192:126–31.

    Article  CAS  Google Scholar 

  28. Chaubey N, Wani BN, Bharadwaj SR, et al. Physicochemical properties of rare earth doped ceria Ce(0.9)Ln(0.1)O(1.95) (Ln = Nd, Sm, Gd) as an electrolyte material for IT-SOFC/SOEC. Solid State Sci. 2013;20:135–41.

    Article  CAS  Google Scholar 

  29. Elangovan S, Hartvigsen JJ, Frost LJ. Intermediate temperature reversible fuel cells. Int J Appl Ceram Technol. 2007;4:109–18.

    Article  CAS  Google Scholar 

  30. Ishihara T, Jirathiwathanakul N, Zhong H. Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte. Energy Environ Sci. 2010;3:665–72.

    Article  CAS  Google Scholar 

  31. Laguna-Bercero MA, Orera VM. Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells. Int J Hydrogen Energy. 2011;36:13051–8.

    Article  CAS  Google Scholar 

  32. Eguchi K, Hatagishi T, Arai H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte. Solid State Ion. 1996;86–8:1245–9.

    Article  Google Scholar 

  33. Zhu S, Wang Y, Rao YY, et al. Chemically-induced mechanical unstability of samaria-doped ceria electrolyte for solid oxide electrolysis cells. Int J Hydrog Energy. 2014;39:12440–7.

    Article  CAS  Google Scholar 

  34. He F, Song D, Peng RR, et al. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-delta. J Power Sources. 2010;195:3359–64.

    Article  CAS  Google Scholar 

  35. Kobayashi T, Abe K, Ukyo Y, et al. Performance of electrolysis cells with proton and oxide-ion conducting electrolyte for reducing nitrogen oxide. Solid State Ion. 2002;154:699–705.

    Article  Google Scholar 

  36. Brisse A, Schefold J, Zahid M. High temperature water electrolysis in solid oxide cells. Int J Hydrogen Energy. 2008;33:5375–82.

    Article  CAS  Google Scholar 

  37. Hauch A, Jensen SH, Ramousse S, et al. Performance and durability of solid oxide electrolysis cells. J Electrochem Soc. 2006;153:A1741–7.

    Article  CAS  Google Scholar 

  38. Yang CH, Coffin A, Chen FL. High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)(0.95)MnO3 with enhanced oxygen electrode performance. Int J Hydrogen Energy. 2010;35:3221–6.

    Article  CAS  Google Scholar 

  39. Ye YM, He TM, Li Y, et al. Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J Electrochem Soc. 2008;155:B811–8.

    Article  CAS  Google Scholar 

  40. Badwal SPS, Jiang SP, Love J, et al. Chemical diffusion in perovskite cathodes of solid oxide fuel cells: the Sr doped LaMn1-xMxO3 (M=Co, Fe) systems. Ceram Int. 2001;27:419–29.

    Article  CAS  Google Scholar 

  41. Liang MD, Yu B, Wen MF, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism. J Power Sources. 2009;190:341–5.

    Article  CAS  Google Scholar 

  42. Chen K, Ai N, Jiang SP. Performance and stability of (La, Sr)MnO3–Y2O3–ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions. Int J Hydrogen Energy. 2012;37:10517–25.

    Article  CAS  Google Scholar 

  43. Laguna-Bercero MA, Kilner JA, Skinner SJ. Performance and characterization of (La, Sr)MnO3/YSZ and La0.6Sr0.4Co0.2Fe0.8O3 electrodes for solid oxide electrolysis cells. Chem Mater. 2010;22:1134–41.

    Article  CAS  Google Scholar 

  44. Marina OA, Pederson LR, Williams MC, et al. Electrode performance in reversible solid oxide fuel cells. J Electrochem Soc. 2007;154:B452–9.

    Article  CAS  Google Scholar 

  45. Tao Y, Nishino H, Ashidate S, et al. Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs. Electrochim Acta. 2009;54:3309–15.

    Article  CAS  Google Scholar 

  46. Choi MB, Singh B, Wachsman ED, et al. Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells. J Power Sources. 2013;239:361–73.

    Article  CAS  Google Scholar 

  47. Yu B, Zhang WQ, Chen J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis. Sci China Ser B-Chem. 2008;51:289–304.

    Article  CAS  Google Scholar 

  48. Jiang W, Lü Z, Wei B, et al. Sm0.5Sr0.5CoO3–Sm0.2Ce0.8O1.9 composite oxygen electrodes for solid oxide electrolysis cells. Fuel Cells. 2014;14:76–82.

    Article  CAS  Google Scholar 

  49. Wei B, Chen K, Zhao L, et al. SmBaCo2O5+δ as high efficient oxygen electrode of solid oxide electrolysis cells. ECS Trans. 2013;57:3189–96.

    Article  Google Scholar 

  50. Yang Z, Jin C, Yang C, et al. Ba0.9Co0.5Fe0.4Nb0.1O3−δ as novel oxygen electrode for solid oxide electrolysis cells. Int J Hydrogen Energy. 2011;36:11572–7.

    Article  CAS  Google Scholar 

  51. Aguadero A, Pérez-Coll D, Alonso JA, et al. A new family of mo-doped SrCoO3−δ perovskites for application in reversible solid state electrochemical cells. Chem Mater. 2012;24:2655–63.

    Article  CAS  Google Scholar 

  52. Laguna-Bercero MA, Kinadjan N, Sayers R, et al. Performance of La2-xSrxCo0.5Ni0.5O4 +/-delta as an oxygen electrode for solid oxide reversible cells. Fuel Cells. 2011;11:102–7.

    Article  CAS  Google Scholar 

  53. Liu Q, Yang C, Dong X, et al. Perovskite Sr2Fe1.5Mo0.5O6-[delta] as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrogen Energy. 2010;35:10039–44.

    Article  CAS  Google Scholar 

  54. Chauveau F, Mougin J, Bassat JM, et al. A new anode material for solid oxide electrolyser: the neodymium nickelate Nd2NiO4+delta. J Power Sources. 2010;195:744–9.

    Article  CAS  Google Scholar 

  55. Ogier T, Bassat JM, Mauvy F, et al. Enhanced performances of structured oxygen electrodes for high temperature steam electrolysis. Fuel Cells. 2013;13:536–41.

    Article  CAS  Google Scholar 

  56. Chen KF, Ai N, Jiang SP. Development of (Gd, Ce)O2-impregnated (La, Sr)MnO3 anodes of high temperature solid oxide electrolysis cells. J Electrochem Soc. 2010;157:P89–94.

    Article  CAS  Google Scholar 

  57. Chen K, Ai N, Jiang SP. Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nano-structured oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy. 2014;39:10349–58.

    Article  CAS  Google Scholar 

  58. Chen K, Ai N, Jiang SP. Enhanced electrochemical performance and stability of (La, Sr)MnO3–(Gd, Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration. Int J Hydrogen Energy. 2012;37:1301–10.

    Article  CAS  Google Scholar 

  59. Yang CH, Jin C, Coffin A, et al. Characterization of infiltrated (La0.75Sr0.25)(0.95)MnO3 as oxygen electrode for solid oxide electrolysis cells. Int J Hydrogen Energy. 2010;35:5187–93.

    Article  CAS  Google Scholar 

  60. Ai N, Chen K, Liu S, et al. Performance and stability of nano-structured Pd and Pd0.95M0.05 (M = Mn, Co, Ce, and Gd) infiltrated Y2O3–ZrO2 oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy. 2013;38:16569–78.

    Article  CAS  Google Scholar 

  61. Chen K, Ai N, Jiang SP. Reasons for the high stability of nano-structured (La, Sr)MnO3 infiltrated Y2O3–ZrO2 composite oxygen electrodes of solid oxide electrolysis cells. Electrochem Commun. 2012;19:119–22.

    Article  CAS  Google Scholar 

  62. Wang WS, Huang YY, Jung SW, et al. A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes. J Electrochem Soc. 2006;153:A2066–70.

    Article  CAS  Google Scholar 

  63. Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv Mater. 2009;21:943–56.

    Article  CAS  Google Scholar 

  64. Hanifi AR, Laguna-Bercero MA, Etsell TH, et al. The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes. Int J Hydrogen Energy. 2014;39:8002–8.

    Article  CAS  Google Scholar 

  65. Chen Y, Bunch J, Jin C, et al. Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+delta. J Power Sources. 2012;204:40–5.

    Article  CAS  Google Scholar 

  66. Kim-Lohsoontorn P, Kim Y-M, Laosiripojana N, et al. Gadolinium doped ceria-impregnated nickel-yttria stabilised zirconia cathode for solid oxide electrolysis cell. Int J Hydrogen Energy. 2011;36:9420–7.

    Article  CAS  Google Scholar 

  67. Osada N, Uchida H, Watanabe M. Polarization behavior of SDC cathode with highly dispersed Ni catalysts for solid oxide electrolysis cells. J Electrochem Soc. 2006;153:A816–20.

    Article  CAS  Google Scholar 

  68. Uchida H, Osada N, Watanabe M. High-performance electrode for steam electrolysis mixed conducting ceria-based cathode with highly-dispersed Ni electrocatalysts. Electrochem Solid State Lett. 2004;7:A500–2.

    Article  CAS  Google Scholar 

  69. Yang X, Irvine JTS. (La0.75Sr0.25)(0.95)Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam. J Mater Chem. 2008;18:2349–54.

    Article  CAS  Google Scholar 

  70. Xing R, Wang Y, Liu S, et al. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation. J Power Sources. 2012;208:276–81.

    Article  CAS  Google Scholar 

  71. Tsekouras G, Irvine JTS. The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis. J Mater Chem. 2011;21:9367–76.

    Article  CAS  Google Scholar 

  72. Ge B, Ma JT, Ai D, et al. Sr2FeNbO6 applied in solid oxide electrolysis cell as the hydrogen electrode: kinetic studies by comparison with Ni-YSZ. Electrochim Acta. 2015;151:437–46.

    Article  CAS  Google Scholar 

  73. Bernuy-Lopez C, Knibbe R, He Z, et al. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production. J Power Sources. 2011;196:4396–403.

    Article  CAS  Google Scholar 

  74. Xu S, Chen S, Li M, et al. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J Power Sources. 2013;239:332–40.

    Article  CAS  Google Scholar 

  75. Gan Y, Qin Q, Chen S, et al. Composite cathode La0.4Sr0.4TiO3−δ–Ce0.8Sm0.2O2−δ impregnated with Ni for high-temperature steam electrolysis. J Power Sources. 2014;245:245–55.

    Article  CAS  Google Scholar 

  76. Yang CH, Yang ZB, Jin C, et al. High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co, Fe)0.8Nb0.2O4+δ–Co–Fe alloy hydrogen electrodes. Int J Hydrogen Energy. 2013;38:11202–8.

    Article  CAS  Google Scholar 

  77. Tsekouras G, Neagu D, Irvine JTS. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ Sci. 2013;6:256–66.

    Article  CAS  Google Scholar 

  78. Li SS, Qin QQ, Xie K, et al. High-performance fuel electrodes based on NbTi0.5M0.5O4 (M = Ni, Cu) with reversible exsolution of the nano-catalyst for steam electrolysis. J Mater Chem A. 2013;1:8984–93.

    Article  CAS  Google Scholar 

  79. Arrive C, Delahaye T, Joubert O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. J Power Sources. 2013;223:341–8.

    Article  CAS  Google Scholar 

  80. Xu SS, Dong DH, Wang Y, et al. Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis. J Power Sources. 2013;246:346–55.

    Article  CAS  Google Scholar 

  81. Schefold J, Brisse A, Zahid M, et al. Long term testing of short stacks with solid oxide cells for water electrolysis. ECS Trans. 2011;35:2915–27.

    Article  CAS  Google Scholar 

  82. Mawdsley JR, Carter JD, Kropf AJ, et al. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks. Int J Hydrogen Energy. 2009;34:4198–207.

    Article  CAS  Google Scholar 

  83. De Haart LGJ, Vinke IC. Long-term operation of planar type SOFC stacks. ECS Trans. 2011;35:187–94.

    Article  Google Scholar 

  84. Schuler JA, Wuillemin Z, Hessler-Wyser A, et al. Cr-poisoning in (La, Sr)(Co, Fe)O3 cathodes after 10,000 h SOFC stack testing. J Power Sources. 2012;211:177–83.

    Article  CAS  Google Scholar 

  85. Chen KF, Jiang SP. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy. 2011;36:10541–9.

    Article  CAS  Google Scholar 

  86. Momma A, Kato T, Kaga Y, et al. Polarization behavior of high temperature solid oxide electrolysis cells (SOEC). J Ceram Soc Jpn. 1997;105:369–73.

    Article  CAS  Google Scholar 

  87. Brichzin V, Fleig J, Habermeier HU, et al. The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia. Solid State Ion. 2002;152:499–507.

    Article  Google Scholar 

  88. Kim J, Ji H-I, Dasari HP, et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization. Int J Hydrogen Energy. 2013;38:1225–35.

    Article  CAS  Google Scholar 

  89. Virkar AV. Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrogen Energy. 2010;35:9527–43.

    Article  CAS  Google Scholar 

  90. Knibbe R, Traulsen ML, Hauch A, et al. Solid oxide electrolysis cells: degradation at high current densities. J Electrochem Soc. 2010;157:B1209–17.

    Article  CAS  Google Scholar 

  91. Keane M, Mahapatra MK, Verma A, et al. LSM–YSZ interactions and anode delamination in solid oxide electrolysis cells. Int J Hydrogen Energy. 2012;37:16776–85.

    Article  CAS  Google Scholar 

  92. Zhang Y, Chen K, Xia C, et al. A model for the delamination kinetics of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy. 2012;37:13914–20.

    Article  CAS  Google Scholar 

  93. Elangovan S, Hartvigsen J, Larsen D, et al. Materials for solid oxide electrolysis cells. ECS Trans. 2011;35:2875–82.

    Article  CAS  Google Scholar 

  94. Minh NQ. Development of Reversible Solid Oxide Fuel Cells (RSOFCs) and stacks. ECS Trans. 2011;35:2897–904.

    Article  CAS  Google Scholar 

  95. Nguyen VN, Fang Q, Packbier U, et al. Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes. Int J Hydrogen Energy. 2013;38:4281–90.

    Article  CAS  Google Scholar 

  96. Schefold J, Brisse A, Tietz F. Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode. J Electrochem Soc. 2012;159:A137–44.

    Article  CAS  Google Scholar 

  97. Tietz F, Sebold D, Brisse A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J Power Sources. 2013;223:129–35.

    Article  CAS  Google Scholar 

  98. The D, Grieshammer S, Schroeder M, et al. Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h. J Power Sources. 2015;275:901–11.

    Article  CAS  Google Scholar 

  99. Fan H, Keane M, Singh P, et al. Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell. J Power Sources. 2014;268:634–9.

    Article  CAS  Google Scholar 

  100. Kim SJ, Choi GM. Stability of LSCF electrode with GDC interlayer in YSZ-based solid oxide electrolysis cell. Solid State Ion. 2014;262:303–6.

    Article  CAS  Google Scholar 

  101. Hjalmarsson P, Sun X, Liu Y-L, et al. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. J Power Sources. 2013;223:349–57.

    Article  CAS  Google Scholar 

  102. Minh NQ. Ceramic fuel-cells. J Am Ceram Soc. 1993;76:563–88.

    Article  CAS  Google Scholar 

  103. Tai LW, Nasrallah MM, Anderson HU, et al. Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3. Solid State Ion. 1995;76:273–83.

    Article  CAS  Google Scholar 

  104. Wei B, Lu Z, Huang XQ, et al. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-delta (0.3 <= x <= 0.7). J Eur Ceram Soc. 2006;26:2827–32.

    Article  CAS  Google Scholar 

  105. Phillipps MB, Sammes NM, Yamamoto O. Gd(1-x)A(x)Co(1-y)Mn(y)O(3) (A = Sr, Ca) as a cathode for the SOFC. Solid State Ion. 1999;123:131–8.

    Article  CAS  Google Scholar 

  106. Kharton VV, Figueiredo FM, Navarro L, et al. Ceria-based materials for solid oxide fuel cells. J Mater Sci. 2001;36:1105–17.

    Article  CAS  Google Scholar 

  107. Hino R, Haga K, Aita H, et al. R & D on hydrogen production by high-temperature electrolysis of steam. Nucl Eng Des. 2004;233:363–75.

    Article  CAS  Google Scholar 

  108. Kim-Lohsoontorn P, Brett DJL, Laosiripojana N, et al. Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3-[delta] – yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3-[delta] oxygen electrodes. Int J Hydrogen Energy. 2010;35:3958–66.

    Article  CAS  Google Scholar 

  109. Choi M-B, Singh B, Wachsman ED, et al. Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells. J Power Sources. 2013;239:361–73.

    Article  CAS  Google Scholar 

  110. Zhu WZ, Deevi SC. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance. Mater Res Bull. 2003;38:957–72.

    Article  CAS  Google Scholar 

  111. Zhang X, O’brien JE, O’brien RC, et al. Improved durability of SOEC stacks for high temperature electrolysis. Int J Hydrogen Energy. 2013;38:20–8.

    Article  CAS  Google Scholar 

  112. Sharma VI, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode. J Electrochem Soc. 2010;157:B441–8.

    Article  CAS  Google Scholar 

  113. Wei B, Chen KF, Zhao L, et al. Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O3-delta oxygen electrodes of solid oxide electrolysis cells. Phys Chem Chem Phys. 2015;17:1601–9.

    Article  CAS  PubMed  Google Scholar 

  114. Chen KF, Hyodo J, Dodd A, et al. Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells. Faraday Discuss. 2015. doi:10.1039/C1035FD00010F.

    Google Scholar 

  115. Jiang SP, Chen XB. Chromium deposition and poisoning of cathodes of solid oxide fuel cells – a review. Int J Hydrogen Energy. 2014;39:505–31.

    Article  CAS  Google Scholar 

  116. Backhaus-Ricoult M, Adib K, Clair TS, et al. In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ion. 2008;179:891–5.

    Article  CAS  Google Scholar 

  117. Rashkeev SN, Glazoff MV. Control of oxygen delamination in solid oxide electrolyzer cells via modifying operational regime. Appl Phys Lett. 2011;99:173506.

    Article  CAS  Google Scholar 

  118. Hughes GA, Yakal-Kremski K, Barnett SA. Life testing of LSM-YSZ composite electrodes under reversing-current operation. Phys Chem Chem Phys. 2013;15:17257–62.

    Article  CAS  PubMed  Google Scholar 

  119. Schiller G, Ansar A, Lang M, et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC). J Appl Electrochem. 2009;39:293–301.

    Article  CAS  Google Scholar 

  120. Chen M, Liu Y-L, Bentzen JJ, et al. Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. J Electrochem Soc. 2013;160:F883–91.

    Article  CAS  Google Scholar 

  121. Kim S-D, Seo D-W, Dorai AK, et al. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells. Int J Hydrogen Energy. 2013;38:6569–76.

    Article  CAS  Google Scholar 

  122. Hauch A, Ebbesen SD, Jensen SH, et al. Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. J Electrochem Soc. 2008;155:B1184–93.

    Article  CAS  Google Scholar 

  123. Hauch A, Jensen SH, Bilde-Sorensen JB, et al. Silica segregation in the Ni/YSZ electrode. J Electrochem Soc. 2007;154:A619–26.

    Article  CAS  Google Scholar 

  124. Gong MY, Liu XB, Trembly J, et al. Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources. 2007;168:289–98.

    Article  CAS  Google Scholar 

  125. Ebbesen SD, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells. J Power Sources. 2009;193:349–58.

    Article  CAS  Google Scholar 

  126. Ebbesen SD, Graves C, Hauch A, et al. Poisoning of solid oxide electrolysis cells by impurities. J Electrochem Soc. 2010;157:B1419–29.

    Article  CAS  Google Scholar 

  127. Ebbesen SD, Høgh J, Nielsen KA, et al. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis. Int J Hydrogen Energy. 2011;36:7363–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by Curtin University Research Fellowships and the Australian Research Council Discovery Project funding scheme (DP150102044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ping Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, K., Dong, D., Jiang, S.P. (2015). Hydrogen Production from Water and Air Through Solid Oxide Electrolysis. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7330-0_8

Download citation

Publish with us

Policies and ethics