Skip to main content

Hydrogen Production by Supercritical Water Gasification of Biomass

  • Chapter

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 5))

Abstract

It is widely accepted that hydrogen energy can sustainably provide the world’s growing energy needs. Currently, hydrogen is produced from mainly nonrenewable feedstocks through biochemical and thermochemical technologies. However, to achieve a genuinely sustainable, economic, viable, and environmentally benign technology, hydrogen will need to be produced from renewable energy sources through innovative production processes. This chapter focuses on one of these technologies that provide a novel approach for hydrogen production: supercritical water gasification of biomass. The process has significant potential for the conversion of biomass to produce hydrogen and other combustible gases. It also has major advantages when compared with other processes, such as eliminating the necessity for drying of the feedstock, providing high gasification efficiency and hydrogen selectivity, enabling the formation of clean gaseous products, and producing much lower amounts of tars and chars. To increase the hydrogen selectivity, the use of catalysts is common, with the preferred catalysts being alkaline salts, some metals, and metal oxides. The supercritical water gasification process can exhibit different gas compositions or activities with respect to the feedstock, reaction conditions, or catalyst used. Therefore, in this chapter, hydrogen production from various biomass sources by supercritical water gasification is comparatively discussed with examples from the literature. The term biomass covered in this chapter includes model compounds (such as glucose, cellulose, and lignin), alcohols, and real biomass (such as industrial wastewaters and sewage sludge). The effects of reaction time, system temperature and pressure, biomass concentration, oxidant concentration, catalyst use, and the kind of catalyst on the hydrogen yield are investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mattos LV, Noronha FB. Partial oxidation of ethanol on supported Pt catalysts. J Power Sources. 2005;145:10–5.

    Article  CAS  Google Scholar 

  2. Susanti RF, Kim J, Yoo K. Supercritical water gasification for hydrogen production: current status and prospective of high-temperature operation. Supercritical fluid technology for energy and environmental applications, chapter 6. Elsevier:Poland, 2014.

    Google Scholar 

  3. Akgün M, Kıpçak E. Catalytic hydrogen production from 2-propanol in supercritical water: comparison of some metal catalysts. J Supercrit Fluids. 2014;90:101–9.

    Article  Google Scholar 

  4. Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sust Energ Rev. 2010;14:2852–62.

    Article  CAS  Google Scholar 

  5. Kalinci Y, Hepbasli A, Dincer I. Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy. 2009;34:8799–817.

    Article  CAS  Google Scholar 

  6. Zhang J. Hydrogen production by biomass gasification in supercritical water. Energeia. 2008;19(6):1–6.

    Google Scholar 

  7. Reddy SN, Nanda S, Dalai AK, Kozinski JA. Supercritical water gasification of biomass for hydrogen production. Int J Hydrog Energy. 2014;39:6912–26.

    Article  CAS  Google Scholar 

  8. Kırtay E. Recent advances in production of hydrogen from biomass. Energy Convers Manag. 2011;52:1778–89.

    Article  Google Scholar 

  9. Susanti RF, Veriansyah B, Kim J, Kim J, Lee Y. Continuous supercritical water gasification of isooctane: a promising reactor design. Int J Hydrog Energy. 2010;35:1957–70.

    Article  CAS  Google Scholar 

  10. Ding N, Azargohar R, Dalai AK, Kozinski JA. Catalytic gasification of cellulose and pinewood to H2 in supercritical water. Fuel. 2014;118:416–25.

    Article  CAS  Google Scholar 

  11. Azadi P, Farnood R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int J Hydrog Energy. 2011;36:9529–41.

    Article  CAS  Google Scholar 

  12. Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M. Biomass gasification in supercritical water: part 1. Effect of the nature of biomass. Fuel. 2007;86:2410–5.

    Article  CAS  Google Scholar 

  13. Jessop PG, Leitner W. Chemical synthesis using supercritical fluids. Germany: WILEY-VCH; 1999.

    Book  Google Scholar 

  14. Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5th ed. New York: McGraw-Hill Higher Education; 2001.

    Google Scholar 

  15. Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant 1. Properties and synthesis reactions. J Supercrit Fluids. 2007;39:362–80.

    Article  CAS  Google Scholar 

  16. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102:2725–50.

    Article  CAS  PubMed  Google Scholar 

  17. Krammer P, Vogel H. Hydrolysis of esters in subcritical and supercritical water. J Supercrit Fluids. 2000;16:189–206.

    Article  CAS  Google Scholar 

  18. Zhou N, Krishnan A, Vogel F, Peters WA. A computational model for supercritical water oxidation of toxic organic wastes. Adv Environ Res. 2000;4:79–95.

    Article  Google Scholar 

  19. Brunner G. Near critical and supercritical ware. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids. 2009;47:373–81.

    Article  CAS  Google Scholar 

  20. He C, Chen CL, Giannis A, Yang Y, Wang JY. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review. Renew Sust Energ Rev. 2014;39:1127–42.

    Article  CAS  Google Scholar 

  21. Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant 2. Degradation reactions. J Supercrit Fluids. 2007;41:361–79.

    Article  CAS  Google Scholar 

  22. Gasafi E, Reinecke MY, Kruse A, Schebek L. Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenergy. 2008;32:1085–96.

    Article  CAS  Google Scholar 

  23. Kruse A, Gawlik A. Biomass conversion in water at 330–410°C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res. 2003;42:267–79.

    Article  CAS  Google Scholar 

  24. Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY. Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev. 2010;14:334–43.

    Article  CAS  Google Scholar 

  25. Anikeev VI, Yermakova A, Manion J, Huie R. Kinetics and thermodynamics of 2-propanol dehydration in supercritical water. J Supercrit Fluids. 2004;32:123–35.

    Article  CAS  Google Scholar 

  26. Basu P. Biomass gasification and pyrolysis: practical design and theory. United States: Elsevier Academic Press; 2010.

    Google Scholar 

  27. Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J. High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrog Energy. 2012;37:11677–90.

    Article  CAS  Google Scholar 

  28. Lu Y, Li S, Guo L, Zhang X. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. Int J Hydrog Energy. 2010;35:7161–8.

    Article  CAS  Google Scholar 

  29. Williams PT, Onwudili J. Composition of products from the supercritical water gasification of glucose: a model biomass compound. Ind Eng Chem Res. 2005;44:8739–49.

    Article  CAS  Google Scholar 

  30. Müller JB, Vogel F. Tar and coke formation during hydrothermal processing of glycerol and glucose. Influence of temperature, residence time and feed concentration. J Supercrit Fluids. 2012;70:126–36.

    Article  Google Scholar 

  31. Van Rossum G, Potic B, Kersten SRA, Van Swaaij WPM. Catalytic gasification of dry and wet biomass. Catal Today. 2009;145:10–8.

    Article  Google Scholar 

  32. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, Van Swaaij WPM, Van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Antal Jr MJ. Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy. 2005;29:269–92.

    Article  CAS  Google Scholar 

  33. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal Jr MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1:32–65.

    Article  CAS  Google Scholar 

  34. Boukis N, Diem V, Habicht W, Dinjus E. Methanol reforming in supercritical water. Ind Eng Chem Res. 2003;42:728–35.

    Article  CAS  Google Scholar 

  35. Taylor JD, Herdman CM, Wu BC, Wally K, Rice SF. Hydrogen production in a compact supercritical water reformer. Int J Hydrog Energy. 2003;28:1171–8.

    Article  CAS  Google Scholar 

  36. Goodwin AK, Rorrer GL. Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chem Eng J. 2010;163:10–21.

    Article  CAS  Google Scholar 

  37. Jin H, Lu Y, Guo L, Cao C, Zhang X. Hydrogen production by partial oxidative gasification of biomass and its model compounds in supercritical water. Int J Hydrog Energy. 2010;35:3001–10.

    Article  CAS  Google Scholar 

  38. Therdthianwong S, Srisiriwat N, Therdthianwong A, Croiset E. Hydrogen production from bioethanol reforming in supercritical water. J Supercrit Fluids. 2011;57:58–65.

    Article  CAS  Google Scholar 

  39. Guo Y, Wang S, Huelsman CM, Savage PE. Products, pathways, and kinetics for reactions of indole under supercritical water gasification conditions. J Supercrit Fluids. 2013;73:161–70.

    Article  CAS  Google Scholar 

  40. Liu Q, Liao L, Liu Z, Dong X. Hydrogen production by glycerol reforming in supercritical water over Ni/MgO-ZrO2 catalyst. J Energy Chem. 2013;22:665–70.

    Article  CAS  Google Scholar 

  41. Zhang L, Xu C, Champagne P. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour Technol. 2010;101:2713–21.

    Article  CAS  PubMed  Google Scholar 

  42. Kıpçak E, Söğüt OÖ, Akgün M. Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water. J Supercrit Fluids. 2011;57:50–7.

    Article  Google Scholar 

  43. Cao C, Guo L, Chen Y, Guo S, Lu Y. Hydrogen production from supercritical water gasification of alkaline wheat straw pulping black liquor in continuous flow system. Int J Hydrog Energy. 2011;36:13528–35.

    Article  CAS  Google Scholar 

  44. Lu Y, Guo L, Zhang X, Ji C. Hydrogen production by supercritical water gasification of biomass: explore the way to maximum hydrogen yield and high carbon gasification efficiency. Int J Hydrog Energy. 2012;37:3177–85.

    Article  Google Scholar 

  45. Chen Y, Guo L, Cao W, Jin H, Guo S, Zhang X. Hydrogen production by sewage sludge gasification in supercritical water with fluidized bed reactor. Int J Hydrog Energy. 2013;38:12991–9.

    Article  CAS  Google Scholar 

  46. Sricharoenchaikul V. Assessment of black liquor gasification in supercritical water. Bioresour Technol. 2009;100:638–43.

    Article  CAS  PubMed  Google Scholar 

  47. Karakuş Y, Aynacı F, Kıpçak E, Akgün M. Hydrogen production from 2-propanol over Pt/Al2O3 and Ru/Al2O3 catalysts in supercritical water. Int J Hydrog Energy. 2013;38:7298–306.

    Article  Google Scholar 

  48. Gadhe JB, Gupta RB. Hydrogen production by methanol reforming in supercritical water: catalysis by in-situ-generated copper nanoparticles. Int J Hydrog Energy. 2007;32:2374–81.

    Article  CAS  Google Scholar 

  49. Byrd AJ, Pant KK, Gupta RB. Hydrogen production from ethanol by reforming in supercritical water using Ru/Al2O3 catalyst. Energy Fuel. 2007;21:3541–7.

    Article  CAS  Google Scholar 

  50. D’Jesus P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E. Influence of process variables on gasification of corn silage in supercritical water. Ind Eng Chem Res. 2006;45:1622–30.

    Article  Google Scholar 

  51. D’Jesus P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E. Gasification of corn and clover grass in supercritical water. Fuel. 2006;85:1032–8.

    Article  Google Scholar 

  52. Arita T, Nakahara K, Nagamib K, Kajimoto O. hydrogen generation from ethanol in supercritical water without catalyst. Tetrahedron Lett. 2003;44:1083–6.

    Article  CAS  Google Scholar 

  53. Boukis N, Diem V, Galla U, Dinjus E. Methanol reforming in supercritical water for hydrogen production. Combust Sci Technol. 2006;178:467–85.

    Article  CAS  Google Scholar 

  54. Susanti RF, Nugroho A, Lee J, Kim Y, Kim J. Noncatalytic gasification of isooctane in supercritical water: a strategy for high-yield hydrogen production. Int J Hydrog Energy. 2011;36:3895–906.

    Article  CAS  Google Scholar 

  55. Yu D, Aihara M, Antal Jr MJ. Hydrogen production by steam reforming glucose in supercritical water. Energy Fuel. 1993;7:574–7.

    Article  CAS  Google Scholar 

  56. Xu D, Wang S, Tang X, Gong Y, Guo Y, Zhang J, Wang Y, Ma H, Zhou L. Influence of oxidation coefficient on product properties in sewage sludge treatment by supercritical water. Int J Hydrog Energy. 2013;38:1850–8.

    Article  CAS  Google Scholar 

  57. Kıpçak E, Akgün M. Oxidative gasification of olive mill wastewater as a biomass source in supercritical water: effects on gasification yield and biofuel composition. J Supercrit Fluids. 2012;69:57–63.

    Article  Google Scholar 

  58. Guo LJ, Lu YJ, Zhang XM, Ji CM, Guan Y, Pei AX. Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today. 2007;129:275–86.

    Article  CAS  Google Scholar 

  59. Li S, Lu Y, Guo L, Zhang X. Hydrogen production by biomass gasification in supercritical water with bimetallic Ni-M/γAl2O3 catalysts (M = Cu, Co and Sn). Int J Hydrog Energy. 2011;36:14391–400.

    Article  CAS  Google Scholar 

  60. Xu D, Wang S, Hu X, Chen C, Zhang Q, Gong Y. Catalytic gasification of glycine and glycerol in supercritical water. Int J Hydrog Energy. 2009;34:5357–64.

    Article  CAS  Google Scholar 

  61. Watanabe M, Inomata H, Arai K. Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy. 2002;22:405–10.

    Article  CAS  Google Scholar 

  62. Watanabe M, Inomata H, Osada M, Sato T, Adschiri T, Arai K. Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water. Fuel. 2003;82:545–52.

    Article  CAS  Google Scholar 

  63. Osada M, Sato T, Watanabe M, Adschiri T, Arai K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel. 2004;18:327–33.

    Article  CAS  Google Scholar 

  64. Onwudili JA, Williams PT. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. Int J Hydrog Energy. 2009;34:5645–56.

    Article  CAS  Google Scholar 

  65. Kruse A, Meier D, Rimbrecht P, Schacht M. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res. 2000;39:4842–8.

    Article  CAS  Google Scholar 

  66. Guo S, Guo L, Cao C, Yin J, Lu Y, Zhang X. Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int J Hydrog Energy. 2012;37:5559–68.

    Article  CAS  Google Scholar 

  67. Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrog Energy. 2003;28:55–61.

    Article  CAS  Google Scholar 

  68. Sinag A, Kruse A, Rathert J. influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res. 2004;42:502–8.

    Article  Google Scholar 

  69. Madenoglu TG, Saglam M, Yuksel M, Ballice L. Simultaneous effect of temperature and pressure on catalytic hydrothermal gasification of glucose. J Supercrit Fluids. 2013;73:151–60.

    Article  Google Scholar 

  70. Madenoglu TG, Boukis N, Saglam M, Yuksel M. Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrog Energy. 2011;36:14408–15.

    Article  Google Scholar 

  71. Taylor AD, DiLeo GJ, Sun K. Hydrogen production and performance of nickel based catalysts synthesized using supercritical fluids for the gasification of biomass. Appl Catal B Environ. 2009;93:126–33.

    Article  CAS  Google Scholar 

  72. Yoshida T, Oshima Y, Matsumura Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy. 2004;26:71–8.

    Article  CAS  Google Scholar 

  73. Lu Y, Li S, Guo L. Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3: effect of Ce loading. Fuel. 2013;103:193–9.

    Article  CAS  Google Scholar 

  74. Osada M, Sato T, Watanabe M, Arai K, Shirai M. Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuel. 2006;20:930–5.

    Article  CAS  Google Scholar 

  75. Therdthianwong S, Srisiriwat N, Therdthianwong A, Croiset E. Reforming of bioethanol over Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts in supercritical water for hydrogen production. Int J Hydrog Energy. 2011;36:2877–86.

    Article  CAS  Google Scholar 

  76. Lee I. Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int J Hydrog Energy. 2011;36:8869–77.

    Article  CAS  Google Scholar 

  77. Osada M, Hiyoshi N, Sato O, Arai K, Shirai M. Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water. Energy Fuel. 2007;21:1854–8.

    Article  CAS  Google Scholar 

  78. Byrd AJ, Kumar S, Kong L, Ramsurn H, Gupta RB. Hydrogen production from catalytic gasification of switchgrass biocrude in supercritical water. Int J Hydrog Energy. 2011;36:3426–33.

    Article  CAS  Google Scholar 

  79. Byrd AJ, Pant KK, Gupta RB. Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water. Ind Eng Chem Res. 2007;46:3574–9.

    Article  CAS  Google Scholar 

  80. Onwudili JA, Williams PT. Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ. 2013;132–133:70–9.

    Article  Google Scholar 

  81. Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M. Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal Today. 2009;146:192–5.

    Article  CAS  Google Scholar 

  82. Youssef EA, Elbeshbishy E, Hafez H, Nakhla G, Charpentier P. Sequential supercritical water gasification and partial oxidation of hog manure. Int J Hydrog Energy. 2010;35:11756–67.

    Article  CAS  Google Scholar 

  83. Kıpçak E, Akgün M. In-situ gas fuel production during the treatment of textile wastewater at supercritical conditions. Water Sci Technol. 2013;67(5):1058–67.

    Article  PubMed  Google Scholar 

  84. Hendry D, Venkitasamy C, Wilkinson N, Jacoby W. Exploration of the effect of process variables on the production of high-value fuel gas from glucose via supercritical water gasification. Bioresour Technol. 2011;102:3480–7.

    Article  CAS  PubMed  Google Scholar 

  85. Guan Q, Savage PE, Weib C. Gasification of alga Nannochloropsis Sp. in supercritical water. J Supercrit Fluids. 2012;61:139–45.

    Article  CAS  Google Scholar 

  86. Wilkinson N, Wickramathilaka M, Hendry D, Miller A, Espanani R, Jacoby W. Rate determination of supercritical water gasification of primary sewage sludge as a replacement for anaerobic digestion. Bioresour Technol. 2012;124:269–75.

    Article  CAS  PubMed  Google Scholar 

  87. Escot Bocanegra P, Reverte C, Aymonier C, Loppinet-Serani A, Barsan MM, Butler IS, Kozinski JA, Gökalp I. Gasification study of winery waste using a hydrothermal diamond anvil cell. J Supercrit Fluids. 2010;53:72–81.

    Article  CAS  Google Scholar 

  88. Osada M, Sato O, Arai K, Shirai M. Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energy Fuel. 2006;20:2337–43.

    Article  CAS  Google Scholar 

  89. Byrd AJ, Pant KK, Gupta RB. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel. 2008;87:2956–60.

    Article  CAS  Google Scholar 

  90. Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N. Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrog Energy. 2007;32:699–704.

    Article  CAS  Google Scholar 

  91. May A, Salvado J, Torras C, Montane D. Catalytic gasification of glycerol in supercritical water. Chem Eng J. 2010;160:751–9.

    Article  CAS  Google Scholar 

  92. Youssef EA, Chowdhury MBI, Nakhla G, Charpentier P. Effect of nickel loading on hydrogen production and chemical oxygen demand (COD) destruction from glucose oxidation and gasification in supercritical water. Int J Hydrog Energy. 2010;35:5034–42.

    Article  CAS  Google Scholar 

  93. Zhang L, Champagne P, Xu CC. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts. Bioresour Technol. 2011;102:8279–87.

    Article  CAS  PubMed  Google Scholar 

  94. Waldner MH, Vogel F. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res. 2005;44:4543–51.

    Article  CAS  Google Scholar 

  95. Muangrat R, Onwudili JA, Williams PT. Alkaline subcritical water gasification of dairy industry waste (whey). Bioresour Technol. 2011;102:6331–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekin Kıpçak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kıpçak, E., Akgün, M. (2015). Hydrogen Production by Supercritical Water Gasification of Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7330-0_7

Download citation

Publish with us

Policies and ethics