Skip to main content

High-Yield Production of Biohydrogen from Carbohydrates and Water Based on In Vitro Synthetic (Enzymatic) Pathways

  • Chapter
Production of Hydrogen from Renewable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 5))

Abstract

Distributed production of green and low-cost hydrogen from renewable energy sources is necessary to develop the hydrogen economy. Carbohydrates, such as cellulose, hemicellulose, starch, sucrose, glucose, and xylose, are abundant renewable bioresources and can provide the source of hydrogen. In this chapter, in vitro synthetic (enzymatic) pathways that overcome the limiting yields of hydrogen-producing microorganisms are discussed. These in vitro synthetic pathways produce hydrogen with theoretical yields from polymeric and monomeric hexoses or xylose with water of 2 mol of hydrogen per carbon molecule of carbohydrate. In the past years, hydrogen production rate of in vitro synthetic enzymatic pathways has been improved to 150 mmol/L/h by 750-fold through systematic optimization. All of the thermostable enzymes used in the pathways have been recombinantly produced in E. coli, and some of them are immobilized for enhanced stability and simple recycling. Redox enzymes are being engineered to work on low-cost and highly stable biomimetic coenzymes. It is expected that low-cost green hydrogen can be produced at $2.00/kg hydrogen in small-sized atmospheric pressure bioreactors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansell RJ, Lowe CR. Artificial redox coenzymes: biomimetic analogues of NAD(+). Appl Microbiol Biotechnol. 1999;51(6):703–10.

    Article  CAS  Google Scholar 

  2. Ardao I, Hwang ET, Zeng AP. In vitro multienzymatic reaction systems for biosynthesis. Fundam Appl New Bioprod Syst. 2013;137:153–84.

    Article  CAS  Google Scholar 

  3. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochem-Us. 2002;41(20):6226–36.

    Article  CAS  Google Scholar 

  4. Campbell E, Meredith M, Minteer SD, Banta S. Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun. 2012;48(13):1898–900.

    Article  CAS  Google Scholar 

  5. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD. Enzyme catalysed biofuel cells. Energy Environ Sci. 2008;1(3):320–37.

    Article  CAS  Google Scholar 

  6. Costa SA, Tzanov T, Carneiro AF, Paar A, Gübitz GM, Cavaco-Paulo A. Studies of stabilization of native catalase using additives. Enzyme Microb Technol. 2002;30(3):387–91.

    Article  CAS  Google Scholar 

  7. Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Phys Today. 2004;57(12):39–44.

    Article  CAS  Google Scholar 

  8. Dohr O, Paine MJI, Friedberg T, Roberts GCK, Wolf CR. Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci U S A. 2001;98(1):81–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dresselhaus MS. Basic research needs for the hydrogen economy. Abstr Pap Am Chem S. 2004;227:U1084–5.

    Google Scholar 

  10. Dudley QM, Karim AS, Jewett MC. Cell‐free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J. 2015;10(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  11. Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G. Rational engineering of enzyme stability. J Biotechnol. 2004;113(1–3):105–20.

    Article  CAS  PubMed  Google Scholar 

  12. Eijsink VGH, Gaseidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. Biomol Eng. 2005;22(1–3):21–30.

    Article  CAS  PubMed  Google Scholar 

  13. Fernández L, Gómez L, Ramírez HL, Villalonga ML, Villalonga R. Thermal stabilization of trypsin with glycol chitosan. J Mol Catal B: Enzym. 2005;34(1):14–7.

    Article  Google Scholar 

  14. Ginosar DM, Petkovic LM, Glenn AW, Burch KC. Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles. Int J Hydrogen Energy. 2007;32(4):482–8.

    Article  CAS  Google Scholar 

  15. Glykys DJ, Banta S. Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng. 2009;102(6):1624–35.

    Article  CAS  PubMed  Google Scholar 

  16. Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy. 2002;27(11):1185–93.

    Article  CAS  Google Scholar 

  17. Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139(4):244–60.

    Article  CAS  Google Scholar 

  18. Hong J, Wang YR, Ye XH, Zhang Y-HP. Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A. 2008;1194(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  19. Iyer PV, Ananthanarayan L. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019–32.

    Article  CAS  Google Scholar 

  20. Jia F, Narasimhan B, Mallapragada S. Materials-based strategies for multi-enzyme immobilization and co-localization: a review. Biotechnol Bioeng. 2014;111(2):209–22.

    Article  CAS  PubMed  Google Scholar 

  21. Kleerebezem R, van Loosdrecht M. Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol. 2007;18(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  22. Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy. 2004;29(2):173–85.

    Article  CAS  Google Scholar 

  23. Liao C-H, Huang C-W, Wu J. Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts. 2012;2(4):490–516.

    Article  CAS  Google Scholar 

  24. Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev. 2013;42(15):6236–49.

    Article  CAS  PubMed  Google Scholar 

  25. Liu WF, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv. 2007;25(4):369–84.

    Article  CAS  PubMed  Google Scholar 

  26. Lo HC, Fish RH. Biomimetic NAD(+) models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Edit. 2002;41(3):478–81.

    Article  CAS  Google Scholar 

  27. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [CP*Rh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg Chem. 2001;40(26):6705–16.

    Article  CAS  PubMed  Google Scholar 

  28. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol. 2008;42(23):8630–40.

    Article  CAS  PubMed  Google Scholar 

  29. Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD(+)/NADH co-factors and [Cp*Rh(bpy)H](+) for selective organic synthesis. J Organomet Chem. 2004;689(25):4783–90.

    Article  CAS  Google Scholar 

  30. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett. 2010;1(18):2655–61.

    Article  CAS  Google Scholar 

  31. Martin del Campo JS, Rollin J, Myung S, Chun Y, Chandrayan S, Patino R, Adams MWW, Zhang Y-HP. High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Edit. 2013;52(17):4587–90.

    Article  CAS  Google Scholar 

  32. Myung S, Rollin J, You C, Sun FF, Chandrayan S, Adams MWW, Zhang Y-HP. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng. 2014;24:70–7.

    Article  CAS  PubMed  Google Scholar 

  33. Myung S, Zhang XZ, Zhang Y-HP. Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog. 2011;27(4):969–75.

    Article  CAS  PubMed  Google Scholar 

  34. Myung SW, You C, Zhang Y-HP. Recyclable cellulose-containing magnetic nanoparticles: immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling. J Mater Chem B. 2013;1(35):4419–27.

    Article  CAS  Google Scholar 

  35. Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IW, Hollmann F. Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett. 2012;15(1):180–3.

    Article  PubMed  Google Scholar 

  36. Rollin JA, Martin del Campo JS, Myung S, Sun FF, You C, Bakovic AE, Castro RL, Chandrayan S, Wu C-H, Adams MWW, Senger R, Zhang Y-HP. High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modelling. Proc Natl Acad Sci U S A. 2015;112:4964–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rollin JA, Tam TK, Zhang Y-HP. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem. 2013;15(7):1708–19.

    Article  CAS  Google Scholar 

  38. Rollin JA, Ye X, del Campo JM, Adams MW, Zhang Y-HP. Novel hydrogen bioreactor and detection apparatus. Adv Biochem Eng Biotechnol. 2014;274:1–17.

    Google Scholar 

  39. Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J. Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J Biol Chem. 2003;278(42):40573–80.

    Article  CAS  PubMed  Google Scholar 

  40. Ryan JD, Fish RH, Clark DS. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Chembiochem. 2008;9(16):2579–82.

    Article  CAS  PubMed  Google Scholar 

  41. Sheldon RA, Sorgedrager M, Janssen MHA. Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations. Chim Oggi. 2007;25(1):62–7.

    CAS  Google Scholar 

  42. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41(1):100.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Turner JA. Sustainable hydrogen production. Science. 2004;305(5686):972–4.

    Article  CAS  PubMed  Google Scholar 

  44. Wang YR, Zhang Y-HP. A highly active phosphoglucomutase from Clostridium thermocellum: cloning, purification, characterization and enhanced thermostability. J Appl Microbiol. 2010;108(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe S, Kodaki T, Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem. 2005;280(11):10340–9.

    Article  CAS  PubMed  Google Scholar 

  46. Weckbecker A, Groger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv Biochem Eng Biot. 2010;120:195–242.

    CAS  Google Scholar 

  47. Woodward J, Mattingly SM, Danson M, Hough D, Ward N, Adams M. In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Nat Biotechnol. 1996;14(7):872–4.

    Article  CAS  PubMed  Google Scholar 

  48. Woodward J, Orr M. Enzymatic conversion of sucrose to hydrogen. Biotechnol Prog. 1998;14(6):897–902.

    Article  CAS  PubMed  Google Scholar 

  49. Woodward J, Orr M, Cordray K, Greenbaum E. Biotechnology: enzymatic production of biohydrogen. Nature. 2000;405(6790):1014–5.

    Article  CAS  PubMed  Google Scholar 

  50. Ye XH, Wang YR, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. Chemsuschem. 2009;2(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  51. Ye XH, Zhang CM, Zhang Y-HP. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol Biosyst. 2012;8(6):1815–23.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol. 2005;71(11):6762–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhang Y-HP. A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy Environ Sci. 2009;2(3):272–82.

    Article  CAS  Google Scholar 

  54. Zhang Y-HP. Using extremophile enzymes to generate hydrogen for electricity. Microbe. 2009;4:560–5.

    Google Scholar 

  55. Zhang Y-HP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng. 2010;105(4):663–77.

    CAS  PubMed  Google Scholar 

  56. Zhang Y-HP. Renewable carbohydrates are a potential high-density hydrogen carrier. Int J Hydrogen Energy. 2010;35(19):10334–42.

    Article  CAS  Google Scholar 

  57. Zhang Y-HP. Hydrogen production from carbohydrates: a mini-review. Acs Sym Ser. 2011;1067:203–16.

    Article  CAS  Google Scholar 

  58. Zhang Y-HP. What is vital (and not vital) to advance economically-competitive biofuels production. Proc Biochem. 2011;46:2091–110.

    Article  CAS  Google Scholar 

  59. Zhang Y-HP. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. 2014. doi:10.1016/j.biotechadv.2014.10.009.

    Google Scholar 

  60. Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One. 2007;2(5):e456. doi:10.1371/journal.pone.0000456.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Zhang Y-HP, Mielenz JR. Renewable hydrogen carrier – carbohydrate: constructing the carbon-neutral carbohydrate economy. Energies. 2011;4(2):254–75.

    Article  Google Scholar 

  62. Zhu ZG, Tam TK, Sun FF, You C, Zhang Y-HP. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun. 2014;5:3026.

    PubMed  Google Scholar 

  63. Zhu ZG, Tam TK, Zhang Y-HP. Cell-free biosystems in the production of electricity and bioenergy. Fundam Appl New Bioprod Syst. 2013;137:125–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

YPZ was supported by the Virginia Tech Biological Systems Engineering Department, and subcontracts from NSF STTR I (IIP-1321528) and SBIR II (IIP-1353266) awards and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. In addition, funding for this work was provided in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Heng Percival Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, JE., Zhang, YH.P. (2015). High-Yield Production of Biohydrogen from Carbohydrates and Water Based on In Vitro Synthetic (Enzymatic) Pathways. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7330-0_3

Download citation

Publish with us

Policies and ethics