Skip to main content

Separation and Purification of Hydrogen Using CO2-Selective Facilitated Transport Membranes

  • Chapter

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 5))

Abstract

A crucial step for the use of hydrogen as a clean, renewable source of energy towards a “hydrogen economy” is the purification of hydrogen from other gaseous compounds, mainly carbon dioxide and hydrogen sulfide. This chapter reviews the carbon dioxide- and hydrogen sulfide-selective facilitated transport membranes for low-pressure and high-pressure applications. Hydrophilic polymeric materials have been investigated that are blended with amino acid salts and polyamines as mobile and fixed-site CO2 carriers, respectively.

For low-pressure applications (1–2 atm), novel facilitated transport membranes have been synthesized in the lab scale containing sterically hindered amines as the CO2 carries in the cross-linked polyvinyl alcohol networks. The membranes have demonstrated high CO2 permeability and high CO2/H2 selectivities. For high-pressure applications (15–30 atm), an improved stability of the membranes was demonstrated by incorporating fumed silica and multiwalled carbon nanotubes (MWNTs) to reinforce the mechanical strength of the polymer matrix.

The facilitated transport membranes highlighted in this work are first of a kind demonstrating the steric hindrance effect of the amine carriers and the presence of carbon nanotubes in enhancing the CO2 transport capacity and long-term stability. These membranes have shown exceptional potential for industrial applications with enhanced H2 recovery, including low-pressure H2 purification for fuel cells and high-pressure syngas purification in an IGCC power plant or steam reforming of hydrocarbons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Phys Today. December 2004;39–44.

    Google Scholar 

  2. Turner JA. A realizable renewable energy future. Science. 1999;285:687–9.

    Article  CAS  PubMed  Google Scholar 

  3. Edwards PP, Kuznetsov VL, David WIF. Hydrogen energy. Phil Trans R Soc A. 2007;365:1043–56.

    Article  CAS  PubMed  Google Scholar 

  4. U.S. Department Of Energy. Robust polymer composite membranes for hydrogen separation. Industrial Technologies Program DOE/EE-0466; May 2011. EERE Information Center. Available online at http://energy.gov/sites/prod/files/2013/11/f4/polymer_composite_membranes.pdf

  5. Zornoza B, Casado C. Advances in hydrogen separation and purification with membrane technology. Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier; 2013. p. 245–266. Available at http://books.google.com/books?id=6pMuGXwPi7IC&dq=-hydrogen+economy+membrane+h2+purification&source=gbs_navlinks_s.

  6. Black J. Cost and performance baseline for fossil energy plants. U.S. Department of Energy DOE/NETL-2010/1397; 2010. National Energy Technology Laboratory. Available online at http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf

  7. Song C. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in 21st century. Catal Today. 2002;77:17–49.

    Article  CAS  Google Scholar 

  8. Merkel TC, Zhou M, Baker R. Carbon dioxide capture with membranes at an IGCC power plant. J Membr Sci. 2012;389:441–50.

    Article  CAS  Google Scholar 

  9. Ribeiro AM, Grande CA, Lopes FVS, Loureiro JM. Four beds pressure swing adsorption for hydrogen purification: case of humid feed and activated carbon beds. AIChE J. 2009;55:2292–302.

    Article  CAS  Google Scholar 

  10. Sweny JW. Synthetic fuel gas purification by the Selexol® process, Allied Chemical Corporation. Available online on the web page https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/18_2_DALLAS_04-73_0142.pdf.

  11. Shao L, Low BT, Chung T, Greenberg AR. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci. 2009;327:18–31.

    Article  CAS  Google Scholar 

  12. Ockwig NW, Nenoff TM. Membrane for hydrogen separation. Chem Rev. 2007;107:4078–110.

    Article  CAS  PubMed  Google Scholar 

  13. Kusakabe K, Shibao F, Zhao G, Sotowa KI, Watanabe K, Saito T. Surface modification of silica membranes in a tubular-type module. J Membr Sci. 2003;215:321–6.

    Article  CAS  Google Scholar 

  14. Iwamoto Y, Sato K, Kato T, Inada T, Kubo Y. A hydrogen-permselective amorphous silica membrane derived from polysilazane. J Eur Ceram Soc. 2005;25:257–64.

    Article  CAS  Google Scholar 

  15. Diniz da Costa JC, Lua GQ, Rudolph V, Lin YS. Novel molecular sieve silica (MSS) membranes: characterization and permeation of single-step and two-step sol-gel membranes. J Membr Sci. 2002;198:9–21.

    Article  CAS  Google Scholar 

  16. Gu YF, Oyama ST. High molecular permeance in a poreless ceramic membrane. Adv Mater. 2007;19:1636–40.

    Article  CAS  Google Scholar 

  17. Adhikari S, Fernando S. Hydrogen membrane separation techniques. Ind Eng Chem Res. 2006;45:875–81.

    Article  CAS  Google Scholar 

  18. Xu ZK, Dannenberg C, Springer J, Banerjee S, Maier G. Gas separation properties of polymers containing fluorene moieties. Chem Mater. 2002;14:3271–6.

    Article  CAS  Google Scholar 

  19. Camacho-Zuniga C, Ruiz-Trevino FA, Zolotukhin MG, del Castillo LF, Guzman J, Chavez J. Gas transport properties of new aromatic cardo poly(aryl ether ketone)s. J Membr Sci. 2006;283:393–8.

    Article  CAS  Google Scholar 

  20. Ghosal K, Freeman BD. Gas separation using polymer membranes: an overview. Polym Adv Tech. 2003;5:673–97.

    Article  Google Scholar 

  21. Lin H, Van Wagner E, Freeman BD, Toy LG, Gupta RP. Plasticization-enhanced hydrogen purification using polymeric membranes. Science. 2006;311:639–42.

    Article  CAS  PubMed  Google Scholar 

  22. Lin H, Freeman BD. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Membr Sci. 2004;239:105–17.

    Article  CAS  Google Scholar 

  23. Okamoto K, Fujii M, Okamyo S, Suzuki H, Tanaka K, Kita H. Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules. 1995;28:6950–6.

    Article  CAS  Google Scholar 

  24. Ho WSW. Membranes comprising salts of aminoacids in hydrophilic polymers. 1997. U.S. Patent 5,611,843.

    Google Scholar 

  25. Ho WSW. Membrane comprising aminoacid salts in polyamine polymers and blends. 2000. U.S. Patent 6,099,621.

    Google Scholar 

  26. Zou J, Ho WSW. CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci. 2006;286:310–21.

    Article  CAS  Google Scholar 

  27. Bai H, Ho WSW. Carbon dioxide-selective membranes for high-pressure synthesis gas purification. Ind Eng Chem Res. 2011;50:12152–61.

    Article  CAS  Google Scholar 

  28. Xing R, Ho WSW. Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. J Membr Sci. 2011;367:91–102.

    Article  CAS  Google Scholar 

  29. Zou J, Huang J, Ho WSW. CO2-selective water gas shift membrane reactor for fuel cell hydrogen processing. Ind Eng Chem Res. 2007;46:2272–9.

    Article  CAS  Google Scholar 

  30. Huang J, El-Azzami L, Ho WSW. Modeling of CO2-selective water gas shift membrane reactor for fuel cell. J Membr Sci. 2005;261:67–75.

    Article  CAS  Google Scholar 

  31. Zou J, Ho WSW. Hydrogen purification for fuel cells by carbon dioxide removal membrane followed by water gas shift reaction. J Chem Eng Jpn. 2007;40:1011–20.

    Article  CAS  Google Scholar 

  32. Hussain A, Hägg M. A feasibility study of CO2 capture from flue gas by facilitated transport membrane. J Membr Sci. 2010;359:140–8.

    Article  CAS  Google Scholar 

  33. Omidkhah M, Pedram MZ, Amooghin AE. Facilitated transport of CO2 through DEA-nediated poly(vinyl alcohol) membrane cross linked by formaldehyde. J Membra Sci Technol. 2013;3:119. doi:10.4172/2155-9589.1000119.

  34. Ramasubramanian K, Zhao Y, Ho WSW. CO2 capture and H2 purification: prospects for CO2-selective membrane process. AIChE J. 2013;59:1033–45.

    Article  CAS  Google Scholar 

  35. Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC power plant. J Membr Sci. 2010;359:173–83.

    Article  CAS  Google Scholar 

  36. Cussler EL, Aris R, Bhown A. On the limits of facilitated diffusion. J Membr Sci. 1989;43:149–64.

    Google Scholar 

  37. Cussler EL. Diffusion mass transfer in fluid systems. 3rd ed. Cambridge: Cambridge University Press; Cambridge, New York, NY 2009.

    Google Scholar 

  38. Zhao Y, Ho WSW. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind Eng Chem Res. 2013;52:8774–82.

    Article  CAS  Google Scholar 

  39. Ho WSW, Sirkar KK. Membrane handbook. Reprint ed. Norwell: Kluwer Academic Publishers; 2001.

    Google Scholar 

  40. Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, et al. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Membr Sci. 2008;314:1–4.

    Article  CAS  Google Scholar 

  41. Bara JE, Gabriel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. J Chem Eng. 2009;147:43–50.

    Article  CAS  Google Scholar 

  42. Chen HZ, Li P, Chung T. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int J Hydrogen Energy. 2012;37:11796–804.

    Article  CAS  Google Scholar 

  43. Kovvali AS, Chen H, Sirkar KK. Dendrimer membranes: a CO2-selective molecular gate. J Am Chem Soc. 2000;122:7594–5.

    Article  CAS  Google Scholar 

  44. Hägg M, Quinn R. Polymeric facilitated transport membranes for hydrogen purification. MRS Bull. 2006;31:750–5.

    Article  Google Scholar 

  45. Quinn R, Laciak DV, Pez GP. Process for separating acid gaseous mixtures utilizing composite membranes formed from salt-polymer blends. 2001. U.S. Patent 6,315,968.

    Google Scholar 

  46. Quinn R, Laciak DV, Appleby JB, Pez GP. Polyelectrolyte membranes for separation of acd gases. 1994. U.S. Patent 5,336,298.

    Google Scholar 

  47. Quinn R, Laciak DV. Polyelectrolyte membranes for acid gas separations. J Membr Sci. 1997;131:49–60.

    Article  CAS  Google Scholar 

  48. Quinn R, Laciak DV, Pez GP. Polyelectrolyte-salt blend membranes for acid gas separations. J Membr Sci. 1997;131:61–9.

    Article  CAS  Google Scholar 

  49. Bai H, Ho WSW. Recent developments in fuel-processing and proton-exchange membranes for fuel cells. Polym Int. 2011;60:26–41.

    Article  CAS  Google Scholar 

  50. Zhao Y, Ho WSW. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. J Membr Sci. 2012;415–416:132–8.

    Article  Google Scholar 

  51. Sartori G, Ho WSW, Savage DW, Chludzinski GR, Wiechert S. Sterically-hindered amines for acid-gas absorption. Sep Purif Methods. 1987;16:171–200.

    Article  CAS  Google Scholar 

  52. Chakraborty AK, Astarita G, Bischoff KB. CO2 absorption in aqueous solutions of hindered amines. Chem Eng Sci. 1986;41:997–1003.

    Article  CAS  Google Scholar 

  53. Park JY, Yoon SJ, Lee H. Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis. Environ Sci Technol. 2003;37:1670–5.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi T, Boetje LM, Koval CA, Noble RD, Bowman CN. Transport properties of carbon dioxide through amine functionalized carrier membranes. Ind Eng Chem Res. 1995;34:4071–7.

    Article  CAS  Google Scholar 

  55. Ramasubramanian K. CO2 (H2S)-selective membranes for fuel cell hydrogen purification and flue gas carbon capture: an experimental and process modeling study. Ph.D. dissertation, The Ohio State University; 2013.

    Google Scholar 

  56. Huang J. CO2 (H2S) membrane separations and WGS membrane reactor modeling for fuel cells. Ph.D. dissertation, The Ohio State University; 2007.

    Google Scholar 

  57. Hamouda SB, Nguyen QT, Langevin D, Roudesli S. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and CO2 facilitated transport. C R Chim. 2010;13:372–9.

    Article  Google Scholar 

  58. Francisco GJ, Chakma A, Feng X. Separation of carbon dioxide from nitrogen using diethanolamine-impregnated poly(vinyl alcohol) membranes. Sep Purf Technol. 2010;71:205–13.

    Article  CAS  Google Scholar 

  59. Zou J. Carbon dioxide selective membranes and their applications in hydrogen processing, Ph.D. dissertation, The Ohio State University; 2007.

    Google Scholar 

  60. Kim TJ, Li B, Hägg MB. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B. 2004;42:4326.

    Article  CAS  Google Scholar 

  61. Zhang L, Wang R. Salting-out effect on facilitated transport membranes for CO2 separation: from fluorine salt to polyoxometalates. RSC Adv. 2012;2:9551–4.

    Article  CAS  Google Scholar 

  62. Patel NP, Miller AC, Spontak RJ. Highly CO2-permeable and selective polymer nanocomposite membranes. Adv Mat. 2003;15:729–33.

    Article  CAS  Google Scholar 

  63. Chen HZ, Chung TS. CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance. Int J Hydrogen Energy. 2012;37:6001–11.

    Article  CAS  Google Scholar 

  64. Lau CH, Liu S, Paul DR, Xia J, Jean YC, Chen H, et al. Silica nanohybrid membranes with high CO2 affinity for green hydrogen purification. Adv Energy Mater. 2011;1:634–42.

    Article  CAS  Google Scholar 

  65. Xia J, Liu S, Lau CH, Chung TS. Liquidlike poly(ethylene glycol) supported in the organic-inorganic matrix for CO2 removal. Macromolecules. 2011;44:5268–80.

    Article  CAS  Google Scholar 

  66. Sforca ML, Yoshida IVP, Nunes SP. Organic-inorganic membranes prepared from polyether diamine and epoxy silane. J Membr Sci. 1999;159:197–207.

    Article  CAS  Google Scholar 

  67. Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res. 2010;49:6530–8.

    Article  CAS  Google Scholar 

  68. Yu B, Cong H, Li Z, Tang J, Zhao SX. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation. J Appl Polym Sci. 2013. doi:10.1002/app.39500.

    Google Scholar 

  69. De Clippel F, Khan AL, Cano-Odena A, Dusselier M, Vanherck K, Peng L, et al. CO2 reverse selective mixed matrix membranes for H2 purification by incorporation of carbon–silica fillers. J Mater Chem A. 2013;1:945–53.

    Article  Google Scholar 

  70. Zhao Y, Jung BT, Ansaloni L, Ho WSW. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. J Membr Sci. 2014;459:233–43.

    Article  CAS  Google Scholar 

  71. Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett. 1998;73:3842–4.

    Article  CAS  Google Scholar 

  72. Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mat. 1999;11:937–41.

    Article  CAS  Google Scholar 

  73. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett. 2002;81:5123–5.

    Article  CAS  Google Scholar 

  74. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, et al. High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater. 2004;14:791–8.

    Article  CAS  Google Scholar 

  75. Chen W, Tao X, Xue P, Cheng X. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films. Appl Surf Sci. 2005;252:1404–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge the Department of Energy/National Energy Technology Laboratory (DE-FE0007632), the Office of Naval Research/DJW Technology (N00014-14-C-098), the National Science Foundation (CBET 1033131 and IIP 1127812), and the Ohio Development Services Agency (OOE-CDO-D-13-05) for their financial support of the results published in this work. This work was partly supported by the Department of Energy under Award Number DE-FE0007632 with substantial involvement of the National Energy Technology Laboratory, Pittsburgh, PA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Winston Ho .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

J :

Steady-state permeation flux (cm3 (STP)/(cm2 s))

ℓ:

Membrane thickness (cm)

P :

Permeability (Barrer)

p :

Pressure (cmHg)

pf :

Feed side pressure (cmHg)

ps :

Sweep (permeate) side pressure (cmHg)

Δp :

Pressure difference between the feed and permeate sides (cmHg)

x :

Retentate molar fraction

y :

Permeate molar fraction

D :

Diffusion coefficient

S :

Solubility

1.1 Greek Letter

α :

Selectivity

1.2 Subscripts

i, j :

Species

1.3 Abbreviations

COE:

Cost of electricity

IGCC:

Integrated gasification combined cycle

MWNT:

Multiwalled carbon nanotubes

PEMFC:

Proton-exchange membrane fuel cell

PSA:

Pressure swing adsorption (PSA)

SMR:

Steam methane reforming

WGS:

Water-gas shift

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vakharia, V., Ho, W.S.W. (2015). Separation and Purification of Hydrogen Using CO2-Selective Facilitated Transport Membranes. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7330-0_11

Download citation

Publish with us

Policies and ethics