Skip to main content

Injection Molding for Multicomponent Materials

  • Chapter
  • First Online:
Multicomponent Polymeric Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 223))

Abstract

Injection molding is one of the most valuable and important manufacturing processes capable of mass-producing delicate plastic parts in net shape with excellent dimensional allowance. Injection molding is used to create many things such as wire spools, packaging, bottle caps, automotive dashboards, pocket combs, some musical instruments (and parts of them), one-piece chairs and small tables, storage containers, mechanical parts (including gears), and most other plastic products available today. For many years, injection molding process and quality control has been an active research area, as part quality and yield requirements become more rigid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han KH, Im YT (1997) Compressible flow analysis of filling and postfilling injection molding with phase-change effect. Compo Struct 38:179

    Article  Google Scholar 

  2. Holm EJ, Petter LH (1999) A unified finite element method model for the injection molding process. Comput Met Appl Mech Eng 178:413

    Article  MATH  Google Scholar 

  3. Kumar A, Ghoshdastidar PS, Muju MK (2002) Computer simulation of transport process during injection mold-filling and optimization of the molding conditions. J Mater Proc Tech 120:438

    Article  Google Scholar 

  4. Courbebaisse G (2005) Numerical simulation of injection molding process and the pre-modeling concept. Comput Mater Sci 34:397

    Article  Google Scholar 

  5. Galantucci LM, Spina R (2003) Evaluation of filling conditions of injection molding by integrating numerical simulations and experimental tests. J Mater Process Tech 141:266

    Article  Google Scholar 

  6. Hill D (1996) Further studies of the injection molding process. Appl. Math Model 20:719

    Article  MATH  Google Scholar 

  7. Banerjee AG, Li X, Fowler G, Gupta SK (2007) Incorporating manufacturability considerations during design of injection molded multi-material objects. Res Eng Design 17:207

    Article  Google Scholar 

  8. Gouker RM, Gupta SK, Bruck HA, Holzschuh T (2006) Manufacturing of multi-material compliant mechanisms using multi-material molding. Int J Adv Manuf Technol 30:1049

    Article  Google Scholar 

  9. Wang KK, Zhou J, Sakurai Y (1999) In ANTEC’99 in plastics engineering, p 611

    Google Scholar 

  10. Wang KK, Hieber CA, Wang N, Zhou J, Lee MC, Sakurai Y (200) In Cornell injection molding program (CIMP) progress report, No. 21. Cornell University, Ithaca, New York, Ch. XI

    Google Scholar 

  11. Chen Z, Turng LS (2005) Review of current developments in process and quality control for injection molding. Adv Polym Technol 24:165

    Article  Google Scholar 

  12. Eckardt H (1985) Mehrkomponenten-Spritzgießen ermöglicht das Herstellen abgeschirmter Gehäusemit gutter Oberfläche in einem Arbeitsgang. Kunststoffe 75:145

    Google Scholar 

  13. Johannaber F (1985) Spritzgießen-Neue Prozeßvarianten. Kunststoffe 75:560

    Google Scholar 

  14. Pötsch G, Michaeli W (1995) Injection molding: an introduction. Hanser/Gardner Publications, Inc.

    Google Scholar 

  15. Alcock J Stephenson D (1996) The powder injection moulding process. Materials World

    Google Scholar 

  16. Young SS, White JL, Clar ES, Oyanagy Y (1980) A basic experimental study of sandwich injection molding with sequential injection. Polym Eng Sic 20:798

    Article  Google Scholar 

  17. Garcia-Etxabe R, Campo JJ, Manchado JC, Clemente R (2002) Application of co-injection technology to handles for the gear lever. In: Injection moulding. Barcelona, Spain, pp 18–19

    Google Scholar 

  18. Eckardt H (1987) Production of high-quality mouldings from recycled materials by means of the multi-component injection moulding process. Plaste Kautsch 34:267

    Google Scholar 

  19. Smith M, Valentage R (2000) Coinjection moulded to fascia production. In: SPE automotive TPO global conference, p 275

    Google Scholar 

  20. Toensmeier PA, Hilpold L (1999) New coinjection designs add applications potential. Mod Plastics Int 29:77

    Google Scholar 

  21. Love JC, Smith GF, Pharoah MW (2002) In mould painting using granular injected paint technology. In: Injection moulding. Barcelona, Spain

    Google Scholar 

  22. Atkinson P, Bagdatlioglu I (1994) Foam sandwich for automotive body panels. In: International polypropylene conference. London

    Google Scholar 

  23. Fowler GT (2004) Cost and performance evaluation models for comparing multishot and traditional injection molding, Master of Science’s thesis in the Faculty of the Graduate School of the University of Maryland

    Google Scholar 

  24. Arburg (1999) Technical information. Multi component injection moulding, 522771-GB-08

    Google Scholar 

  25. Heim HP, Haber H (2003) Specialized molding techniques: application, design, materials and processing. Plast Des Libr

    Google Scholar 

  26. Crawford RJ (1998) Plastic engineering, 3rd ed.. Butterworth-Heinemann

    Google Scholar 

  27. Baird DG, Collias DI (1998) Polymer processing: principles and design. Wiley-Interscience Publication

    Google Scholar 

  28. Park HS, Anh DBH (2010) A new approach for molding multi component parts. Int J Precision Eng Manuf 11:291

    Article  Google Scholar 

  29. Li X, Gupta SK (2003) Manufacturability analysis of multi-material objects molded by rotary platen multi-shot molding process, In: International mechanical engineering congress exposure (IMECE2003). Washington DC, USA

    Google Scholar 

  30. Higgs R (2000) Plastics seeking to usurp the underwire. Plast News (USA) 40:9

    Google Scholar 

  31. Smith C (2000) Turning a profit. Plast Rubber Wkly

    Google Scholar 

  32. Sonnery (1992) Multi-material moulding opens doors to design and development. Br Plast Rubber 3:4

    Google Scholar 

  33. Ford Motor Co. (2000) Ford reduces costs with eight santoprene tpe parts. Mod Plast Int (USA) 30:19

    Google Scholar 

  34. Vink D (2000) Electrifying productivity. Euro Plast News 27:49

    Google Scholar 

  35. Maniscalco M (2001) Overmoulding winner merges design and process. Injection Molding 9:52

    Google Scholar 

  36. Sifam (1996) Making multi-shot work. Plast Rubber Wkly 1625:21

    Google Scholar 

  37. Making it with multi-shot (1995) Sifam European community; European unionUK; Western Europe. Plast Rubber Wkly 1583:13

    Google Scholar 

  38. Thoma H (1988) Rationalisieren durch Mehrkomponenten-Spritzgieben. Kunststoffe 78:665

    Google Scholar 

  39. Reker H, Ullmann R (1989) Konstruktion and fertigung eines rasierergehäuses in “Hart-Weich-Technik”. Kunststoffe 79:164

    Google Scholar 

  40. Schultheis SM (1991) Ventildeckel mit dichtung in einem arbeitsgang herstellen. Kunststoffe 81:876

    Google Scholar 

  41. Arning M (2000) Two-shot injection moulding high performance and conventional elastomers. In: High performance elastomers

    Google Scholar 

  42. Zhang K, Liu Z, Yang B, Yang W, Lu Y, Wang L, Sun N, Yang M (2011) Cylindritic structures of high-density polyethylene molded by multi-melt multi-injection molding. Polymer 52:3871

    Article  Google Scholar 

  43. Seldén RJ (1997) J. Injec. Mold. Techno. 1:189

    Google Scholar 

  44. Meridies R (1981) Verfahren zum herstellen von sandwichspritzgußteilen mit einum gas als kernkomoponente. Kunststoffe 71:420

    Google Scholar 

  45. Klamm M, Feldmann F (1988) Gasinnendruckverfahren beim spritzgießen. Kunststoffe 78:767

    Google Scholar 

  46. Klotz B, Bürkle E (1989) Neue mőglichkeiten beim spritzgießen durch das gasinnendruckverfahren. Kunststkffe 79:1102

    Google Scholar 

  47. Pearson T (1986) Fomteilherstellung nach dem cinpres-verfahren. Kunststoffe 76:667

    Google Scholar 

  48. Leyrer KH (1990) Spritzgießen mit dem gasinnendruckprozeß. Plastverarbeiter 41:39

    Google Scholar 

  49. Eyerer P, Bürkle E (1991) Spritzgießen mit reduzierter schließkraft. Kunststoffe 81:851

    Google Scholar 

  50. Anon Durch (1990) Injektortechnik unabhängig vom schmelzanguß. Plastverarbeiter 41:34

    Google Scholar 

  51. Jaroschek C (1990) Gasinnendruck zum ausblasen überschüssiger schmelze. Kunststoffe 41:34

    Google Scholar 

  52. Fleischer J, Kieckmann AM (2006) Automation of the powder injection molding process. Microsyst Technol 12:702

    Article  Google Scholar 

  53. Brousseau EB, Dimov SS, Pham DT (2010) Some recent advances in multi-material micro- and nano-manufacturing. Int J Adv Manuf Technol 47:161

    Article  Google Scholar 

  54. Attia UM, Alcock JR (2011) A review of micro-powder injection moulding as a microfabrication technique. J Micromesh Microeng 21:043001

    Article  Google Scholar 

  55. Tay BY, Liu L, Loh NH, Tor SB, Murakoshi Y, Maeda R (2005) Surface roughness of microstructured component fabricated by μMIM. Mater Sci Eng A 396:311

    Article  Google Scholar 

  56. Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1

    Article  Google Scholar 

  57. German RM (2009) Medical and dental applications for microminiature powder injection moulding (microPIM)-a roadmap for growth. PIM Int. 3:21

    Google Scholar 

  58. Liu L, Loh NH, Tay BY, Tor SB, Murakoshi Y, Maeda R (2007) Effects of thermal debinding on surface roughness in micro powder injection molding. Mater Lett 61:809

    Article  Google Scholar 

  59. Ruprecht R, Gietzelt T, Műller K, Piotter V, Haußelt J (2002) Injection molding of microstructured components from plastics, metals and ceramics. Microsyst Technol 8:351

    Article  Google Scholar 

  60. Petzoldt F (2008) Micro powder injection moulding-challenges and opportunities. PIM Int 2:37

    Google Scholar 

  61. Yin H, Jia C, Qu X (2008) Micro powder injection molding-large scale production technology for micro-sized components. Sci China Ser E: Technol Sci 51:121

    Article  Google Scholar 

  62. Piotter V, Gietzelt T, Plewa K, Ruprecht R, Hausselt J (2001) Tiny parts made by micro powder injection molding. Proc Adv Powder Metall Part Mater 13–17:728

    Google Scholar 

  63. Li SG, Fu G, Reading I, Tor SB, Loh NH, Chaturvedi P, Yoon SF, Youcef-Toumi K (2007) Dimensional variation in production of high-aspect-ratio micro-pillars array by micro powder injection molding. Appl Phys A 89:721

    Article  ADS  Google Scholar 

  64. Fu G, Loh NH, Tor SB, Tay BY, Murakoshi Y, Maeda R (2005) Injection molding, debinding and sintering of 316L stainless steel microstructures. Appl Phys A 81:495

    Article  ADS  Google Scholar 

  65. Loh NH, Tor SB, Tay BY, Murakoshi Y, Maeda R (2008) Fabrication of micro gear by micro powder injection molding. Microsyst Technol 14:43

    Article  Google Scholar 

  66. Rota A (2002) New features in material issues for metallic micro components by MIM. In: Proceedings of PM2TEC, 10/49-/57

    Google Scholar 

  67. Fu G, Tor SB, Loh NH, Hardt DE (2010) Fabrication of robust tooling for mass production of polymeric microfluidic devices. J Micromech Microeng 20:085019

    Article  Google Scholar 

  68. Rota A, Duong TV, Hartwig T (2002) Wear resistant tools for reproduction technologies produced by micro powder metallurgy. Microsyst Technol 7:225

    Article  Google Scholar 

  69. Gietzelt T, Piotter V, Jacobi O, Ruprecht R, Hausselt J (2003) Fabrication of micromolds for gearwheels by micro powder injection molding. Adv Eng Mater 5:139

    Article  Google Scholar 

  70. Zeep B, Norajitra P, Piotter V, Boehm J, Ruprecht R, Hausselt J (2007) Net shaping of tungsten components by micro powder injection moulding. Fusion Eng Des 82:2660

    Article  Google Scholar 

  71. Yoshikawa K, Ohmori H (2001) Outstanding features of powder injection molding for micro parts manufacturing. RIKEN Rev 34:13

    Google Scholar 

  72. Laddha SG, Wu C, Park SJ, Lee S, Ahn S, German RM, Atre SV (2010) Characterization and simulation of macroscale mold-filling defects in microminiature powder injection molding. Int J Powder Metall 46:49

    Google Scholar 

  73. Wang MW (2010) Microceramic injection molding of a multilayer micropatterned micropart. Int J Adv Manuf Technol 51:145

    Article  Google Scholar 

  74. Meng J, Loh NH, Fu G, Tor SB, Tay BY (2010) Replication and characterization of 316L stainless steel micro-mixer by micro powder injection molding. J Alloy Compd 496:293

    Article  Google Scholar 

  75. German RM (2010) Materials for microminiature powder injection molded medical and dental devices. Int J Powder Metall 46:15

    MathSciNet  Google Scholar 

  76. Thomas P, Levenfeld B, Várez A, Cervera A (2009) Production of alumina microparts by powder injection molding. Int J Appl Ceram Technol 8:617

    Article  Google Scholar 

  77. German RM (1999) Rationalization of injection moulding of stainless steel based on component features. Met Powder Rep 54:38

    Article  Google Scholar 

  78. Rota A, Duong TV, Hartwig T (2002) Micro powder metallurgy for the replicative production of metallic microstructures. Microsyst Technol 8:323

    Article  Google Scholar 

  79. Okubo K, Tanaka S, Ito H (2009) The effects of metal particle size and distributions on dimensional accuracy for micro parts in micro metal injection molding. In: Proceedings of annual technical conference (ANTEC)

    Google Scholar 

  80. Piotter V, Beck M, Plewa K, Ritzhaupt-Kleissl H, Ruh A, Hausselt J (2009) Micro PIM moves into the zone of industrial possibility. Met Powder Rep 64:35

    Article  Google Scholar 

  81. Piotter V (1999) PIM looks for role in the micro world. Met Powder Rep 54:36

    Article  Google Scholar 

  82. Urval R, Lee S, Atre SV, Park SJ, German RM (2008) Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: part I. Primary design parameters. Powder Metall 51:133

    Article  Google Scholar 

  83. Mohamad NNH, Muhamad N, Ismail MH, Jamaludin KR, Ahmad S, Ibrahim MHI (2009) Flow behaviour to determine the defects of green part in metal injection molding. Int J Mech Mater Eng 4:70

    Google Scholar 

  84. Zauner R (2006) Micro powder injection moulding. Microelectron Eng 83:1442

    Article  Google Scholar 

  85. Piotter V, Finnah K, Plewa R, Ruprecht R, Hausselt J (2005) High-resistive micro components produced by high-pressure powder injection moulding. In: Proceedings of 4 m international conference. Elsevier, Amsterdam

    Google Scholar 

  86. Ruprecht R (1997) Various replication techniques for manufacturing three-dimensional metal microstructures. Microsyst Technol 4:28

    Article  Google Scholar 

  87. Rak ZS (1999) New trends in powder injection moulding. Powder Metall Met Ceram 38:126

    Article  Google Scholar 

  88. Piotter V, Hanemann T, Heldele R, Mueller M, Mueller T, Plewa K, Ruh A (2010) Metal and ceramic parts fabricated by microminiature powder injection molding. Int J Powder Metall 46:21

    Google Scholar 

  89. Piotter V, Bauer W, Knitter R, Mueller M, Mueller T, Plewa K (2011) Powder injection moulding of metallic and ceramic micro parts. Microsyst Technol 17:251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Park, SJ., Lee, SY. (2016). Injection Molding for Multicomponent Materials. In: Kim, J., Thomas, S., Saha, P. (eds) Multicomponent Polymeric Materials. Springer Series in Materials Science, vol 223. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7324-9_4

Download citation

Publish with us

Policies and ethics