Skip to main content

Algae as a Source of Biofuel

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 26))

Abstract

Discovering the next source of transportation fuels remains one of the greatest challenges in the twenty-first century for governments and scientists. Bio-based fuels, currently the source of less than 1 % of the transportation fuel supply chain, represent a potential renewable feedstock. Presently, arable land-based biofuel feedstock production has resulted in an increase in food values and environmental degradation. Contrasting traditional agrarian-based feedstocks, algae represent a carbon neutral alternative. The resurgence in micro and macroalgal-based biofuels has resulted in numerous studies on the production of biodiesel, bioethanol, and biogas. The fundamental economic modeling of algal-based biofuels does not support the direct utilization of algae as a feedstock as the various algal bioproducts are far more valuable. As a result, algal-based biofuel production will be economically viable when fully integrated into complete bioproducts/biofuel processing strategy which will be covered in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adenle AA, Haslam GE, Lee L (2013) Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy 61:182–195

    Article  CAS  Google Scholar 

  • Ahmed F, Li Y, Schenk PM (2012) Algal biorefinery: sustainable production of biofuels and aquaculture feed. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 21–41. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_2

  • American Society for testing and Materials (ASTM) (2009) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. Web address: http://www.astm.org/SNEWS/JF_2009/nelson_jf09.html

  • Badger PC (2002) Ethanol from cellulose: a general review. Reprinted from: Trends in new crops and new uses. Janick J, Whipkey A (eds). ASHS Press, Alexandria, pp 17–21

    Google Scholar 

  • Bastianoni S, Marchettini N (1996) Ethanol production from biomass: analysis of process efficiency and sustainability. Biomass Bioenergy 11(5):411–418

    Article  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  PubMed  Google Scholar 

  • Bird KT, Benson J (1987) Seaweed cultivation for renewable resources. Elsevier Science Ltd, Amsterdam, pp 1–381

    Google Scholar 

  • BP (2014) BP statistical review of world energy. Web address: https://www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2015/bpstatistical-review-of-world-energy-2015-full-report.pdf

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Butler MR (1931) Comparison of the chemical composition of some marine algae. Plant Physiol 6(2):295–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpentier B, Festino C, Aubart C (1988) Anaerobic digestion of floatation sludges from the alginic acid extraction process. Biol Waste 23:269–278

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrad R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22(1–3):1–8

    Article  CAS  Google Scholar 

  • Davis TA, Ramirez M, Mucci A, Larsen B (2004) Extraction, isolation and cadmium binding of alginate from Sargassum spp. J Appl Phycol 16:275–284

    Article  CAS  Google Scholar 

  • Day JG, Stanley MS (2012) Biological constrains on the exploitation of microalgae for biofuel. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 101–129. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_6

  • de la Jara A, Mendosa H, Martel A, Molina C, de la Nordstron L, Rosa V, Diaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Demirbas AH (2009) Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol Part A 23:1–13

    Article  CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14(5):419–422

    Article  CAS  Google Scholar 

  • DuPont A (2013) Best practices for the sustainable production of algae-based biofuel in China. Mitig Adapt Strateg Glob Chang 18:97–111

    Article  Google Scholar 

  • Dumsday GJ, Jones K, Stanley GA, Pamment NB (1997) Recombinant organisms for ethanol production from hemicelluloseic hydrolyzates – a review of recent progress. Australas Biotechnol 7:285–295

    CAS  Google Scholar 

  • Edwards M (2008) Green algae strategy. End oil imports and engineer sustainable food and fuel. ISBN 1440421846EAN-13 is 9781440421846 Tempe, Arizona. p 248

    Google Scholar 

  • Ethanol Across America Summer (2007) The impact of ethanol production on food, feed and fuel, pp 1–8. Web address: http://www.cleanfuelsdc.org/pubs/documents/FoodFeedandFuel08.pdf

  • Faus RD, Powers S, Burken JG, Alvarez PJ (2009) The water footprint of biofuels: a drink or drive issue? Environ Sci Technol 43:3005–3010

    Article  Google Scholar 

  • Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20:151–159

    Article  Google Scholar 

  • Gacesa P (1992) Minireview: enzymatic degradation of alginates. Int J Biochem 24:545–552

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89

    Article  CAS  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sus Energy Rev 14:842–848

    Article  CAS  Google Scholar 

  • Groenestijn JWV, Hazewinkel JHO, Bakker RR (2007) Pre-treatment of lignocellolose with biological acid recycling (the biosulfurol process). TNO, pp 1–6. Pre-treatment of lignocellolose with biological acid recycling (the biosulfurol process). TNO:1–6

    Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  CAS  Google Scholar 

  • Haugen F, Kortner F, Larsen B (1990) Kinetics and specificity of alginate lyases: part I, a case study. Carbohydr Res 198:101–109

    Article  CAS  PubMed  Google Scholar 

  • Hong JW, Jo SW, Yoon HS (2014) Research and development for algae-based technologies in Korea: a review of algae biofuel production. Photosynth Res. doi:10.1007/s11120-014-9974-y

    PubMed  Google Scholar 

  • Horn SJ, Østgaard K (2001) Alginate lyase activity and acidogenesis during fermentation of Laminaria hyperborea. J Appl Phycol 13:143–152

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  CAS  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algal biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):246–251

    Article  Google Scholar 

  • Kumar S, Sahoo D (2012) Seaweeds as a source of bioethanol. In: Algal biotechnology and environment. I. K. International Publication, New Delhi, pp 101–109

    Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in abiorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Lin S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sustain Energy Rev 14:938–954

    Article  Google Scholar 

  • Markou G, Neraantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Mair C, Kraan S (2010) Seaweeds for second generation bioethanol; can we compete with corn? XX International Seaweed Symposium, México, p 77

    Google Scholar 

  • Mata TM, Martin AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsumoto M, Hiroko Y, Nobukazu S, Hiroshi O, Tadashi M (2003) Sacchari of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotechnol 105:247–254

    Article  PubMed  Google Scholar 

  • Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enzym Microb Technol 8(7):386–394

    Article  CAS  Google Scholar 

  • Moen E, Horn SJ, Østgaard K (1997) Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes. J Appl Phycol 9:157–166

    Article  CAS  Google Scholar 

  • Nair S, Paulose H (2014) Emergence of green business models: the case of algae biofuel for aviation. Energy Policy 65:175–184

    Article  Google Scholar 

  • Pattarkine MV, Pattarkine VM (2012) Nanotechnology for algal biofuel. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 147–163

    Google Scholar 

  • Quain DE, Boulton CA (1987) Growth and metabolism of mannitol by strains of S. cerevisiae. J Gen Microbiol 133:1675–1684

    CAS  PubMed  Google Scholar 

  • Reznik A, Israel A (2012) Fuel from seaweeds: rationale and feasibility. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 241–254. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_19

  • Sahoo D, Kumar S, Elangbam G, Devi SS (2012) Biofuel production from algae through integrated biorefinery. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 215–230. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_12

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schumacher M, Yanik J, Sinağ A, Kruse A (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58:131–135

    Article  CAS  Google Scholar 

  • Shields R, Flynn K, Lovitt B, Greenwell C, Ratcliffe I, Facey P, Jarvis R (2008) A technology review and roadmap for microalgal biotechnology in Wales

    Google Scholar 

  • Silva MTL, Reis A (2012) Biodiesel production from microalgal methods for microalgal lipid assessment with emphasis on the use of flow cytometry. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 253–267. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_14

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuel production. Renew Sus Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011b) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102:26–34

    Article  CAS  PubMed  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Spolaore P, Joannis CC, Duran E, Isambert A (2006) Commercial application of microalgae: a review. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Staff Angel Research (2007) The truth about oil: energy and capital. Retrieved from http://www.energyandcapital.com/reports/TruthAboutOil.pdf

  • Subhadra B, Grinson-George (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4:2575–2581

    Article  CAS  Google Scholar 

  • Torzillo G, Faraloni C, Giannelli L (2012) Biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. In: Cellular origin, life in extreme habitats and astrobiology new volume (25): the science of algal fuel, pp 305–319. ISBN-978-94-007-5110-1, doi:10.1007/978-94-007-5110-1_17

  • Van Dijken JP, Scheffers WA (1986) Redox balances in metabolism of sugar by yeasts. FEMS Microbiol Rev 32:199–224

    Article  Google Scholar 

  • Vivekanand V, Eijsink VGH, Horn SJ (2012) Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J Appl Phycol 24(5):1295–1301

    Article  CAS  Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba A, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Article  Google Scholar 

  • Wheal AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Focus 17:482–487

    Google Scholar 

  • Yokoyama S, Jonouchi K, Imou K (2007) Energy production from marine biomass: fuel cell power generation driven by methane produce from seaweed. Proc World Acad Sci Eng Technol 22:320–323

    Google Scholar 

  • Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi IG, Kim KH (2011) Production of 3,6-anhydro-L-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem 46:88–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savindra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, S., Sahoo, D., Levine, I.A. (2015). Algae as a Source of Biofuel. In: Sahoo, D., Seckbach, J. (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7321-8_19

Download citation

Publish with us

Policies and ethics