Skip to main content

Harmful Algal Blooms

  • Chapter
The Algae World

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 26))

Abstract

It is widely believed that the frequency and geographic distribution of marine Harmful Algal Blooms (HABs) have been increasing worldwide. HABs are aquatic phenomena caused by the rapid growth and accumulation of certain microalgae, which can usually lead to marked discoloration of surface waters, and severe impacts on public health, commerce, and the environment. In order to reduce the impacts of HABs on public health, the economy, and coastal ecosystems, it has to understand the causes and effects of HABs and to track harmful toxins. Three well-documented long-term global trends and patterns in progress have attracted attention as the mechanisms potentially underlying the HAB phenomenon: increasing nutrient enrichment of global coastal waters and epicontinental seas; global warming and associated climatic perturbations; global dispersal and redistribution of bloom species in ballast water. The specific causes of HABs are complex, vary between species and locations, and are not all well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P (1996) Design and implementation of some harmful algal monitoring systems. IOC Technical Series No. 44[M]. UNESCO, Paris, p 102

    Google Scholar 

  • Anderson DM (1994) Red tides. Sci Am 271:62–68

    Article  CAS  PubMed  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726

    Article  Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Jack Rensel JE, Townsend DW, Trainer VL, Vargo GA (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8(1):39–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson DM, Cembell AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176

    Article  PubMed  Google Scholar 

  • Baden DG, Bourdelais AJ, Jacocks H, Michelliza S, Naar J (2005) Natural and derivative brevotoxins: historical background, multiplicity and effects. Environ Health Perspect 113(5):621–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deeds JR, Terlizzi DE, Adolf JE, Stoecker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (= Gyrodinium galatheanum) (Dinophyceae)-a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169–189

    Article  CAS  Google Scholar 

  • Feki W, Hamza A, Frossard V, Abdennadher M, Hannachi I, Jacquot M, Belhassen M, Aleya L (2012) What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, Southwestern Mediterranean sea. Harmful Algae. http://dx.doi.org/10.1016/j.hal.2012.12.001

  • Fleming LE, Kirkpatrick B, Backer LC, Bean JA, Wanner A, Reich A, Zaias J, Cheng YS, Pierce R, Naar J, Abraham WM, Baden DG (2007) Aerosolized red-tide toxins (brevetoxins) and asthma. Chest 131(1):187–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fletcher RL (1996) The occurrence of “green tides” – a review. Ecol Stud 123:7–43

    Article  Google Scholar 

  • Glibert PM, Magnien R, Lomas MW, Alexander J, Fan CK, Haramoto E, Trice M, Kana TM (2001) Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24:875–883

    Article  CAS  Google Scholar 

  • Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species. Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45

    Article  CAS  Google Scholar 

  • Gobler CJ, Burson A, Koch F, Tang Y, Mulholland MR (2012) The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17:64–74

    Article  CAS  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99

    Article  Google Scholar 

  • Hallegraeff GM, Bolch CJ (1991) Transport of toxic dinoflagellate cysts via ships’ ballast water. Mar Pollut Bull 22:27–30

    Article  Google Scholar 

  • Hallegraeff GM, Bolch CJ (1992) Transport of dinoflagellate cysts in ships’ ballast water: implications for plankton biogeography and aquaculture. J Plankton Res 14:1067–1084

    Article  Google Scholar 

  • Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34:L01602

    Article  Google Scholar 

  • Hu L, Liu J, Wang Q, Yang Z, Jia R, Cai C, Wu W, Chen S-F, He P (2012) Development of an immunochromatographic strip test for the rapid detection of okadaic acid in shellfish sample. J Appl Phycol. doi:10.1007/s10811-012-9949-3

    Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury R, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner R (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Wright SW, Zapata M (1999) Recent advances in HPLC pigment analysis of phytoplankton. Mar Freshw Res 50:879–896

    Article  CAS  Google Scholar 

  • Jickells TD (1998) Nutrient biogeochemistry of the coastal zone. Science 281:217–222

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen BW, Reifenrath WG, Stafford RG, Mehta M (1991) Methods for in vitro skin absorption studies of a lipophilic toxin produced by red tide. Toxicon 66:1–17

    Article  CAS  Google Scholar 

  • Kirkpatrick B, Fleming LE, Squicciarini D, Backer LC, Clark R, Abraham W, Benson J, Cheng YS, Johnson D, Pierce R, Zaias J, Bossart GD, Baden DG (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3:99–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez CB, Dortch Q, Jewett EB, Garrison D (2008) Scientific assessment of marine harmful algal blooms. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, Washington, DC. http://ocean.ceq.gov/about/sup_jsost_iwgs.html. Accessed 20 Jan 2013

    Google Scholar 

  • Macfarlane J (2009) Amazing discovery of green algae which could save the world from global warming. http://www.dailymail.co.uk/sciencetech/article-1104772/Amazing-discovery-green-algae-save-world-global-warming.html?ITO=1490. 4 Jan 2009

  • Masó M, Garcés E (2006) Harmful microalgae blooms (HAB); problematic and conditions that induce them. Mar Pollut Bull 53:620–630

    Article  PubMed  Google Scholar 

  • Merceron M, Antoine V, Auby I, Morand P (2007) In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks. Sci Total Environ 384(1–3):293–305

    Article  CAS  PubMed  Google Scholar 

  • Mudie PJ, Rochon A, Levac E (2002) Palynological records of red tide-producing species in Canada: past trends and implications for the future. Palaeogeogr Palaeoclimatol Palaeoecol 180:159–186

    Article  Google Scholar 

  • Nelson TA, Haberlin K, Nelson AV, Ribarich H, Hotchkiss R, Van Alstyne KL, Buckingham L, Simunds DJ, Fredrickson K (2008) Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89:1287–1298

    Article  PubMed  Google Scholar 

  • Nuzzi R, Waters RM (2004) Long-term perspective on the dynamics of brown tide blooms in Long Island coastal bays. Harmful Algae 3(4):279–293

    Article  CAS  Google Scholar 

  • Probyn TA, Bernard S, Pitcher GC, Pienaar RN (2001) Ecophysiological studies on Aureococcus anophagefferens blooms in Saldanha Bay, South Africa. Harmful Algae 42(5):405–408

    CAS  Google Scholar 

  • Rabalais NN, Nixon SW (2002) Preface: nutrient over-enrichment of the coastal zone. Estuaries 25:639

    Article  Google Scholar 

  • Rounsefell GA, Evans JE (1958) Large-scale experimental test of copper sulfate as a control for the Florida red tide. U.S. Fish Wildlife Service Special Science Report 270

    Google Scholar 

  • Secher S (2009) Measures to control harmful algal blooms. Plymouth Stud Sci 2(1):212–227

    Google Scholar 

  • Shirota A (1989) Red tide problem and countermeasures (2). Int J Aquat Fish Technol 1:195–223

    Google Scholar 

  • Smayda TJ (2002) Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. J Oceanogr 58:281–294

    Article  Google Scholar 

  • Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behavior. Prog Oceanogr 85:92–107

    Article  Google Scholar 

  • Tilstone GH, Míguez BM, Figueiras FG, Fermín EG (2000) Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes. Mar Ecol Prog Ser 205:23–41

    Article  Google Scholar 

  • Wazniak CE, Patricia M (2004) Glibert Potential impacts of brown tide, Aureococcus anophagefferens, on juvenile hard clams, Mercenaria mercenaria, in the Coastal Bays of Maryland, USA. Harmful Algae 3(4):321–329

    Article  CAS  Google Scholar 

  • Wong CK, Wong CK (2003) HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere 52:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S, Nohara S, Tatsumoto H (2009) Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 10:239–245

    Article  Google Scholar 

  • Yamochi S (2013) Effects of desiccation and salinity on the outbreak of a green tide of Ulva pertusa in a created salt marsh along the coast of Osaka Bay, Japan. Estuar Coast Shelf Sci 116:21–28

    Article  CAS  Google Scholar 

  • Zhang QC, Qiu LM, Yu RC, Kong FZ, Wang YF, Yan T, Gobler CJ, Zhou M-J (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124

    Article  Google Scholar 

  • Zhang Jianheng, Yuanzi Huo, Kefeng Yu, Qunfang Chen, Qing He, Wei Han, Liping Chen, Jiachun Cao, Dingji Shi, Peimin He (2013). Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J Appl Phycol 25:795–803

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peimin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

He, P. (2015). Harmful Algal Blooms. In: Sahoo, D., Seckbach, J. (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7321-8_12

Download citation

Publish with us

Policies and ethics