Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

  • 1176 Accesses

Abstract

In Chaps. 2 ∼ 5, we found rabbit prion protein has a structural conformational change from α-helices into β-sheets at 350 and 450 K in the environments from neutral pH to low pH. However, the resistant species dogs and horses , and the nonresistant species humans and mice do not have such performance. Thus, we may say that SBs (such as D177-R163 , the ‘bow string’ of the S2-H2 loop) clearly contribute to the structural stability of rabbit prion protein. The nonresistant species humans and mice do not always have this ‘bow string’. This provides a clue of treatments of prion diseases. Clearly, there should be many other clues (for example, surface electrostatic charge distributions (Sect. 9.2), copper binding (Sect. 9.3.1) to reveal the secret of rabbits resisting to prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlow RM, Rennie JC (1976) The fate of ME7 scrapie infection in rats, guinea-pigs and rabbits. Res Vet Sci 21(1):110–111

    CAS  PubMed  Google Scholar 

  2. Biljan I, Ilc G, Giachin G, Raspadori A, Zhukov I, Plavec J, Legname G (2011) Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. J Mol Biol 412(4):660–673

    Article  CAS  PubMed  Google Scholar 

  3. Case DA, Darden TA, Cheatham TE, Simmerling III CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11, University of California, San Francisco

    Google Scholar 

  4. Chan CH, Yu TH, Wong KB (2011) Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS ONE 6(6):e21624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cheng CJ, Daggett V (2014) Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 4(1):181–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chianini F, Fernández-Borges N, Vidal E, Gibbard L, Pintado B, de Castro J, Priola SA, Hamilton S, Eatona LS, Finlayson J, Pang Y, Steele P, Reid HW, Dagleish MP, Castilla J(2012) Rabbits are not resistant to prion infection. Proc Natl Acad Sci U S A 109(13):5080–5085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Courageot MP, Daude N, Nonno R, Paquet S, Di Bari MA, Le Dur A, Chapuis J, Hill AF, Agrimi U, Laude H, Vilette D (2008) A cell line infectible by prion strains from different species. J Gen Virol 89(Pt 1):341–347

    Article  CAS  PubMed  Google Scholar 

  8. Crichton RR, Ward RJ (2006) Metal-based neurodegeneration, from molecular mechanisms to therapeutic strategies. Wiley, Chichester. ISBN:978-1-119-97714-8

    Google Scholar 

  9. Damberger FF, Christen B, Pérez DR, Hornemann S, Wüthrich K (2011) Cellular prion protein conformation and function. Proc Natl Acad Sci U S A 108(42):17308–17313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fernandez-Borges N, Chianini F, Erana H, Vidal E, Eaton SL, Pintado B, Finlayson J, Dagleish MP, Castilla J (2012) Naturally prion resistant mammals: a utopia? Prion 6(5):425–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fernandez-Funez P, Casas-Tinto S, Zhang Y, Gomez-Velazquez M, Morales-Garza MA, Cepeda-Nieto AC, Castilla J, Soto C, Rincon-Limas DE (2009) In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms. PLoS Genet 5(6):e1000507

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fernandez-Funez P, Zhang Y, Sanchez-Garcia J, Jensen K, Zou WQ, Rincon-Limas DE (2011) Pulling rabbits to reveal the secrets of the prion protein. Commun Integr Biol 4(3):262–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Götz AW, Williamson MJ, Xu D, Poole D, Grand SL, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J Chem Theory Comput 8(5):1542–1555

    Article  PubMed Central  PubMed  Google Scholar 

  14. Guest WC, Cashman NR, Plotkin SS (2010) Electrostatics in the stability and misfolding of the prion protein: salt bridges, self-energy, and salvation. Biochem Cell Biol 88(2):371–381

    Article  CAS  PubMed  Google Scholar 

  15. Guest WC, Cashman NR, Plotkin SS (2011) A theory for the anisotropic and inhomogeneous dielectric properties of proteins. Phys Chem Chem Phys 13(13):6286–6295

    Article  CAS  PubMed  Google Scholar 

  16. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko K, Zulianello L, Scott M, Cooper CM, Wallace AC, James TL, Cohen FE, Prusiner SB (1997) Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A 94(19):10069–10074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Khan MQ (2010) Misfolding of particular PrP species and susceptibility to prion infection. Master degree thesis, University of Toronto

    Google Scholar 

  19. Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, Chakrabartty A (2010) Prion disease susceptibility is affected by β-structure folding propensity and local side-chain interactions in PrP. Proc Natl Acad Sci U S A 107(46):19808–19813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wthrich K, Oesch B (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390(6655):74–77

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wei DQ, Wang JF, Chou KC (2007) Computational studies of the binding mechanism of calmodulin with chrysin. Biochem Biophys Res Commun 358(4):1102–1107

    Article  CAS  PubMed  Google Scholar 

  22. Lin DH, Wen Y (2011) Progresses on prion proteins. Scientia Sinica Chimica 41(4):683–698 (in Chinese)

    Article  Google Scholar 

  23. Ma Q, Fan JB, Zhou Z, Zhou BR, Meng SR, Hu JY, Chen J, Liang Y (2012) The contrasting effect of macromolecular crowding on amyloid fibril formation. PLoS ONE 7(4):e36288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nisbet RM, Harrison CF, Lawson VA, Masters CL, Cappai R, Hill AF (2010) Residues surrounding the glycosylphosphatidylinositol anchor attachment site of PrP modulate prion infection: insight from the resistance of rabbits to prion disease. J Virol 84(13):6678–6686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Perez DR, Damberger FF, Wuthrich K (2010) Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol 400(2):121–128

    Article  CAS  PubMed  Google Scholar 

  26. Polymenidoua M, Trusheimb H, Stallmacha L, Moosa R, Julius JA, Mielea G, Lenzbauerb C, Aguzzia A (2008) Canine MDCK cell lines are refractory to infection with human and mouse prions. Vaccine 26(21):2601–2614

    Article  Google Scholar 

  27. Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278(5336):245–251

    Article  CAS  PubMed  Google Scholar 

  28. Prusiner SB (1998) Prions (Nobel Lecture). Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rhee SH, Chung CP, Chung CP, Park YJ (2009) Method for preparing a prion-free bond grafting substitute. Research Triangle Park NC USA Patent no. 20090304807. http://www.faqs.org/patents/app/20090304807#ixzz38Fci5wsI. Accessed in May 2015

  30. Salomon-Ferrer R, Gotz AW, Poole D, Grand SL, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 8(5):1542–1555

    Google Scholar 

  31. Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y (2003) Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: insight into dynamics and properties. Biophys J 85(2):1176–1185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36(3):151–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Soto C, Castilla J (2004) The controversial protein-only hypothesis of prion propagation. Nat Med 10 Suppl:S63–S67

    Article  PubMed  Google Scholar 

  34. Sweeting B, Brown E, Chakrabartty A, Pai EF (2009) The structure of rabbit PrPC: clues into species barrier and prion disease susceptibility. Can Light Source 28:72–73. http://www.lightsource.ca/science/pdf/activity_report_2009/28.pdf

  35. Sweeting B, Khan MQ, Chakrabartty A, Pai EF (2010) Structural factors underlying the species barrier and susceptibility to infection in prion disease. Biochem Cell Biol 88(2): 195–202

    Article  CAS  PubMed  Google Scholar 

  36. Vidal E, Fernández-Borges N, Pintado B, Ordóñez M, Márquez M, Fondevila D, Torres JM, Pumarola M, Castilla J (2013) Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features. J Neurosci 33(18):7778–7786

    Article  CAS  PubMed  Google Scholar 

  37. Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–4059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vorberg I, Martin HG, Eberhard P, Suzette AP (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77(3):2003–2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Walker R (2010) Amber tutorials: TUTORIAL B1: simulating a small fragment of DNA, section 5: Running Minimization and MD (in explicit solvent) http://ambermd.org/tutorials/basic/tutorial1/section5.htm. Access in May 2015

  40. Wen Y, Li J, Xiong MQ, Peng Y, Yao WM, Hong J, Lin DH (2010) Solution structure and dynamics of the I214V mutant of the rabbit prion protein. PLoS ONE 5(10):e13273

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wen Y, Li J, Yao WM, Xiong MQ, Hong J, Peng Y, Xiao GF, Lin DH (2010) Unique structural characteristics of the rabbit prion protein. J Biol Chem 285(41):31682–31693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang JP (2010) Studies on the structural stability of rabbit prion protein probed by molecular dynamics simulations of its wild-type and mutants. J Theory Biol 264(1):119–122

    Article  CAS  Google Scholar 

  43. Zhang JP (2011) Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. J Theory Biol 269(1):88–95

    Article  CAS  Google Scholar 

  44. Zhang JP (2012) Molecular dynamics studies on the structural stability of wild-type rabbit prion protein: surface electrostatic charge distributions. In: Battik C, Belhassine K (eds) Bioinformatics research: new developments. NOVA Science Publishers, New York, Chapter 7, pp 131–8. ISBN:978-1-61942-363-3

    Google Scholar 

  45. Zhang JP, Liu DDW (2011) Molecular dynamics studies on the structural stability of wild-type dog prion protein. J Biomol Struct Dyn 28(6):861–869

    Article  CAS  PubMed  Google Scholar 

  46. Zhang JP, Wang F, Chatterjee S (2015) Molecular dynamics studies on buffalo prion protein. J Biomol Struct Dyn. doi:10.1080/07391102.2015.1052849

    Google Scholar 

  47. Zhang JP, Wang F, Zhang YL (2015) Molecular dynamics studies on the NMR structures of rabbit prion protein wild-type and mutants: surface electrostatic charge distributions. J Biomol Struct Dyn 33(6):1326–1335

    Article  CAS  PubMed  Google Scholar 

  48. Zhang JP, Zhang YL (2014) Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. J Theory Biol 342:70–82

    Article  CAS  Google Scholar 

  49. Zhao H, Liu LL, Du SH, Wang SQ, Zhang YP (2012) Comparative analysis of the Shadoo gene between cattle and buffalo reveals significant differences. PLoS ONE 7(10):e46601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhou Z, Yan X, Pan K, Chen J, Xie ZS, Xiao GF, Yang FQ, Liang Y (2011) Fibril formation of the rabbit/human/bovine prion proteins. Biophys J 101(6):1483–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). Surface Electrostatic Charge Distributions. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_9

Download citation

Publish with us

Policies and ethics