Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

  • 1159 Accesses

Abstract

Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect humans and animals. Rabbits are the known mammalian species reported to be resistant to infection from prion diseases isolated from other species (Vorberg et al., J Virol 77(3):2003–2009, 2003). Fortunately, the NMR structure of rabbit prion protein (124–228) (PDB entry 2FJ3), the NMR structure of rabbit prion protein mutation S173N (PDB entry 2JOH) and the NMR structure of rabbit prion protein mutation I214V (PDB entry 2JOM) were released recently (Wen et al., J Biol Chem 285(41):31682–31693, 2010; PLoS ONE 5(10):e13273, 2010). This chapter studies these NMR structures by MD simulations. Simulation results confirm the structural stability of wild-type rabbit prion protein , and show that the SB D177-R163 greatly contributes to the structural stability of rabbit prion protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Case DA, Darden TA, Caldwell JW, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

    Google Scholar 

  2. Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER 7, University of California, San Francisco

    Google Scholar 

  3. El-Bastawissy E, Knaggs MH, Gilbert IH (2001) Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. J Mol Graph Model 20(2):145–154

    Article  CAS  PubMed  Google Scholar 

  4. Hornemann S, Glockshuber R (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc Natl Acad Sci U S A 95(11):6010–6014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  6. Lee S, Eisenberg D (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Biol 10(9):725–730

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Mei FH, Xiao GF, Guo CY, Lin DH (2007) 1H, 13C and 15N resonance assignments of rabbit prion protein 91–228. J Biomol NMR 38(2):181

    Article  CAS  PubMed  Google Scholar 

  8. Maiti NR, Surewicz WK (2001) The role of disulfide bridge in the folding and stability of the recombinant human prion protein. J Biol Chem 276(4):2427–2431

    Article  CAS  PubMed  Google Scholar 

  9. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  10. Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y (2003) Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: insight into dynamics and properties. Biophys J 85(2):1176–1185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shamsir MS, Dalby AR (2005) One gene, two diseases and three conformations: molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. PROTEINS: Struct Funct Bioinf 59(2):275–290

    Article  CAS  Google Scholar 

  12. Vorberg I, Martin HG, Eberhard P, Suzette AP (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77(3):2003–2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weissmann C (1996) The ninth Datta lecture. Molecular biology of transmissible spongiform encephalopathies. FEBS Lett 389(1):3–11

    Article  CAS  PubMed  Google Scholar 

  14. Yang SC, Levine H, Onuchic JN, Cox DL (2005) Structure of infectious prions: stabilization by domain swapping. FASEB J 19(13):1778–1782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). The NMR Structure and Dynamics of the Wild-Type and Mutants. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_3

Download citation

Publish with us

Policies and ethics