Skip to main content

Hybrid Method of Discrete Gradient with Simulated Annealing or Genetic Algorithm

  • Chapter
  • 1149 Accesses

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

Abstract

X-ray crystallography is a powerful tool to determine the protein 3D structure. However, it is time-consuming and expensive, and not all proteins can be successfully crystallized, particularly for membrane proteins. Although NMR spectroscopy is indeed a very powerful tool in determining the 3D structures of membrane proteins, it is also time-consuming and costly. To the best of the author’s knowledge, there is little structural data available on the AGAAAAGA palindrome in the hydrophobic region (113–120) of prion proteins due to the noncrystalline and insoluble nature of the amyloid fibril, although many experimental studies have shown that this region has amyloid fibril forming properties and plays an important role in prion diseases. In view of this, the present study is devoted to address this problem from computational approaches such as global energy optimization, simulated annealing, and structural bioinformatics. The optimal atomic-resolution structures of prion AGAAAAGA amyloid fibils reported in this chapter have a value to the scientific community in its drive to find treatments for prion diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4(10):765–775

    Article  CAS  PubMed  Google Scholar 

  2. Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can J Chem 86(4):342–357

    Article  CAS  Google Scholar 

  3. Bagirov AM (2003) Continuous subdifferential approximations and their applications. J Math Sci 15(5):2567–2609

    Article  Google Scholar 

  4. Bagirov AM, Karasözen B, Sezer M (2008) Discrete gradient method: derivative-free method for nonsmooth optimization. J Optim Theory Appl 137(2):317–334

    Article  Google Scholar 

  5. Bagirov A, Karmitsa N, Mäkelä MM (2014) Introduction to nonsmooth optimization – theory, practice and software. Springer, London/New York. ISBN:978-3-319-08113-7

    Book  Google Scholar 

  6. Bagirov AM, Zhang JP (2003) Comparative analysis of the cutting angle and simulated annealing methods in global optimization. Optimization 52(4–5):363–378

    Article  Google Scholar 

  7. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78

    Article  CAS  PubMed  Google Scholar 

  8. Brown DR (2001) Microglia and prion disease. Microsc Res Tech 54(2):71–80

    Article  CAS  PubMed  Google Scholar 

  9. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5(16):2057–2060

    Article  CAS  PubMed  Google Scholar 

  10. Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127(2):355–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11(11):1023–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cappai R, Collins SJ (2004) Structural biology of prions. In: Rabenau HF, Cinatl J, Doerr HW (eds) Prions – a challenge for science, medicine and the public health system. Contributions to microbiology, vol 11. Karger, Basel, pp 14–32

    Google Scholar 

  13. Carter DB, Chou KC (1998) A model for structure dependent binding of Congo Red to Alzeheimer beta-amyloid fibrils. Neurobiol Aging 19(1):37–40

    Article  CAS  PubMed  Google Scholar 

  14. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10, University of California, San Francisco

    Google Scholar 

  15. Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30(1):3–48

    Article  CAS  PubMed  Google Scholar 

  16. Chou KC (1989) Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem Sci 14(6):212–213

    Article  CAS  PubMed  Google Scholar 

  17. Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223(2):509–517

    Article  CAS  PubMed  Google Scholar 

  18. Chou KC (1989) Graphic rules in steady and non-steady enzyme kinetics. J Biol Chem 264(20):12074–12079

    CAS  PubMed  Google Scholar 

  19. Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35(1):1–24

    Article  CAS  PubMed  Google Scholar 

  20. Chou KC (1995) A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. PROTEINS: Struct, Funct Gene 21(4):319–344

    Article  CAS  Google Scholar 

  21. Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. PROTEINS: Struct, Funct, Gene (Erratum: ibid., 2001, Vol 44, 60) 43(3):246–255

    Google Scholar 

  22. Chou KC (2004) Molecular therapeutic target for type-2 diabetes. J Proteome Res 3(6):1284–1288

    Article  CAS  PubMed  Google Scholar 

  23. Chou KC (2004) Insights from modelling the tertiary structure of BACE2. J Proteome Res 3(5):1069–1072

    Article  CAS  PubMed  Google Scholar 

  24. Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11(16):2105–2134

    Article  CAS  PubMed  Google Scholar 

  25. Chou KC (2010) Graphic rule for drug metabolism systems. Curr Drug Metab 11(4):369–378

    Article  CAS  PubMed  Google Scholar 

  26. Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review). J Theor Biol 273(1):236–247

    Article  CAS  PubMed  Google Scholar 

  27. Chou KC, Carlacci L (1991) Simulated annealing approach to the study of protein structures. Protein Eng 4(6):661–667

    Article  CAS  PubMed  Google Scholar 

  28. Chou KC, Chen NY (1977) The biological functions of low-frequency phonons. Sci Sin 20:447–457

    CAS  Google Scholar 

  29. Chou KC, Howe WJ (2002) Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun 292(3):702–708

    Article  CAS  PubMed  Google Scholar 

  30. Chou KC, Maggiora GM, Scheraga HA (1992) The role of loop-helix interactions in stabilizing four-helix bundle proteins. Proc Natl Acad Sci U S A 89(16):7315–7319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chou KC, Scheraga HA (1982) Origin of the right-handed twist of beta-sheets of poly-L-valine chains. Proc Natl Acad Sci U S A 79(22):7047–7051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS (Erratum: ibid., 2003, Vol 310, 675). Biochem Biophys Res Comm 308(1):148–151

    Google Scholar 

  33. Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30(4):275–349

    Article  CAS  PubMed  Google Scholar 

  34. Chou KC, Zhang CT, Maggiora GM (1994) Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers 34(1):143–153

    Article  CAS  PubMed  Google Scholar 

  35. Chou KC, Zhou GP (1982) Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104(5):1409–1413

    Article  CAS  Google Scholar 

  36. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York. ISBN:978-0-898712-56-8

    Google Scholar 

  37. Coleman T, Shalloway D, Wu Z (1994) A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing. J Glob Optim 4(2):171–185

    Article  Google Scholar 

  38. Daude N (2004) Prion diseases and the spleen. Viral Immunol 17(3):334–349

    Article  CAS  PubMed  Google Scholar 

  39. Deaven DM, Ho KM (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75(2):288–291

    Article  CAS  PubMed  Google Scholar 

  40. Demyanov VF, Rubinov AM (2000) Quasidifferentiability and related topics. Kluwer Academic, Dordrecht/Boston. ISBN:0-7923-6284-5

    Book  Google Scholar 

  41. Dennis JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia. ISBN:978-0-898713-64-0

    Book  Google Scholar 

  42. Doye J (1999) Global optimization and multiple-funnel landscapes: Lennard-Jones clusters. In: International workshop on global optimization, Firenze, 28 Sept–2 Oct 1999

    Google Scholar 

  43. Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261(5123):872–878

    Article  CAS  PubMed  Google Scholar 

  44. Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044

    Article  CAS  PubMed  Google Scholar 

  45. Holscher C, Delius H, Burkle A (1998) Overexpression of nonconvertible PrPC delta114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J Virol 72(2):1153–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Huang HX, Pardalos PM (2002) Multivariable partition approach for optimization problems. Cybern Syst Anal 2:134–147

    Google Scholar 

  47. Huang HX, Pardalos PM, Shen ZJ (2002) Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem. J Glob Optim 22(1–4):97–118

    Article  Google Scholar 

  48. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Copper and Zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP 106–126. Biochem 40(27):8073–8084

    Article  CAS  Google Scholar 

  49. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 73(4):1557–1565

    Article  CAS  PubMed  Google Scholar 

  50. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  PubMed  Google Scholar 

  51. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H (2003) NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc Natl Acad Sci U S A 100(25):14790–14795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Leary RH (1997) Global optima of Lennard-Jones clusters. J Glob Optim 11(1):35–53

    Article  Google Scholar 

  53. Locatelli M, Schoen F (2008) Structure prediction and global optimization. Optima Math Program Soc Newsl U S A 76:1–8

    Google Scholar 

  54. Norstrom EM, Mastrianni JA (2005) The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J Biol Chem 280(29):27236–27243

    Article  CAS  PubMed  Google Scholar 

  55. Ogayar A, Sánchez-Pérez M (1998) Prions: an evolutionary perspective. Int Microbiol 1(3):183–190

    CAS  PubMed  Google Scholar 

  56. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(31):10870–10875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Pan KM, Baldwin M, Nguyen J (1993) Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pardalos PM, Shalloway D, Xue GL (1994) Optimization methods for computing global minima of nonconvex potential energy functions. J Glob Optim 4(2):117–133

    Article  Google Scholar 

  59. Pielak RM, Chou JJ (2010) Flu channel drug resistance: a tale of two sites. Protein Cell 1(3):246–258

    Article  CAS  PubMed  Google Scholar 

  60. Pielak RM, Jason R, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci U S A 106(18):7379–7384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  62. Prusiner SB (1998) Prions (Nobel Lecture). Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Reilly CE (2000) Nonpathogenic prion protein (PrPC) acts as a cell-surface signal transducer. J Neurol 247(10):819–820

    Article  CAS  PubMed  Google Scholar 

  64. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382(6587):180–182

    Article  CAS  PubMed  Google Scholar 

  65. Romero D, Barron C, Gomez S (1999) The optimal geometry of Lennard-Jones clusters: 148–309. Comput Phys Commun 123(1–3):87–96

    Article  CAS  Google Scholar 

  66. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  67. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Sinkala Z (2006) Soliton/exciton transport in proteins. J Theory Biol 241(4):919–927

    Article  CAS  Google Scholar 

  69. Tsai HHG (2005) Understanding the biophysical mechanisms of protein folding, misfolding, and aggregation at molecular level (in Chinese). Chem (The Chinese Chem Soc of Taipei) 63:601–612

    CAS  Google Scholar 

  70. Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16(12):1267–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang JF, Wei DQ, Li L, Chou KC (2008) Review: drug candidates from traditional chinese medicines. Curr Top Med Chem 8(18):1656–1665

    Article  CAS  PubMed  Google Scholar 

  72. Wegner C, Romer A, Schmalzbauer R, Lorenz H, Windl O, Kretzschmar HA (2002) Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells. J Gen Virol 83(Pt 5):1237–1245

    Article  CAS  PubMed  Google Scholar 

  73. Wei DQ, Sirois S, Du QS, Arias HR, Chou KC (2005) Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivatives. Biochem Biophys Res Commun 338(2):1059–1064

    Article  CAS  PubMed  Google Scholar 

  74. Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2(11):861–871

    Article  CAS  PubMed  Google Scholar 

  75. Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16(9):973–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Wolf MD, Landman U (1998) Genetic algorithms for structural cluster optimization. J Phys Chem A 102(30):6129–6137

    Article  CAS  Google Scholar 

  77. Wolfe PH (1975) A method of conjugate subgradients of minimizing nondifferentiable convex functions. Math Program Study 3:145–173

    Article  Google Scholar 

  78. Wolfe PH (1976) Finding the nearest point in polytope. Math Program Study 11(1):128–149

    Article  Google Scholar 

  79. Xiang Y, Cheng L, Cai W, Shao X (2004) Structural distribution of Lennard-Jones clusters containing 562 to 1000 atoms. J Phys Chem A 108(44):9516–9520

    Article  CAS  Google Scholar 

  80. Xiang Y, Jiang H, Cai W, Shao X (2004) An efficient method based on lattice construction and the genetic algorithm for optimization of large Lennard-Jones clusters. J Phys Chem A 108(16):3586–3592

    Article  CAS  Google Scholar 

  81. Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Pept Lett 14(9):871–875

    Article  CAS  PubMed  Google Scholar 

  82. Xiao X, Lin WZ, Chou KC (2008) Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. J Comput Chem 29(12):2018–2024

    Article  CAS  PubMed  Google Scholar 

  83. Xiao X, Shao SH, Chou KC (2006) A probability cellular automaton model for hepatitis B viral infections. Biochem Biophys Res Commun 342(2):605–610

    Article  CAS  PubMed  Google Scholar 

  84. Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC (2005) An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation. J Theor Biol 235(4):555–565

    Article  CAS  PubMed  Google Scholar 

  85. Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005) Using complexity measure factor to predict protein subcellular location. Amino Acids 28(1):57–61

    Article  CAS  PubMed  Google Scholar 

  86. Xiao X, Shao SH, Huang ZD, Chou KC (2006) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27(4):478–482

    Article  PubMed  Google Scholar 

  87. Xiao X, Wang P, Chou KC (2008) Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J Theory Biol 254(3):691–696

    Article  CAS  Google Scholar 

  88. Xiao X, Wang P, Chou KC (2009) GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J Comput Chem 30(9): 1414–1423

    Article  CAS  PubMed  Google Scholar 

  89. Xue GL (1993) Parallel two-level simulated annealing. Proceedings of the 7th international conference on Supercomputing, pp 357–366. ISBN:0-89791-600-X, doi:10.1145/165939.166011

    Google Scholar 

  90. Xue GL, Maier RS, Rosen JB (1992) Minimizing the Lennard-Jones potential function on a massively parallel computer. Proceedings of the 6th international conference on Supercomputing, pp 409–416. ISBN:0-89791-485-6, doi:10.1145/143369.143443

    Google Scholar 

  91. Zhang JP (2003) A brief review on results and computational algorithms for minimizing the Lennard-Jones potential. arXiv.org > physics > arXiv:1101.0039v1: arxiv.org/PS_cache/arxiv/pdf/1101/1101.0039v1.pdf or adsabs.harvard.edu/abs/2011arXiv1101.0039Z

    Google Scholar 

  92. Zhang JP (2004) Derivative-free hybrid methods in global optimization and their applications to data mining, protein folding, unfolding, misfolding. The University of Ballarat, Doctoral Dissertation, Ballarat

    Google Scholar 

  93. Zhang JP (2009) Studies on the structural stability of rabbit prion probed by molecular dynamics simulations. J Biomol Struct Dyn 27(2):159–162

    Article  PubMed  Google Scholar 

  94. Zhang JP (2010) Studies on the structural stability of rabbit prion protein probed by molecular dynamics simulations of its wild-type and mutants. J Theory Biol 264(1):119–122

    Article  CAS  Google Scholar 

  95. Zhang JP (2011) Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. J Theory Biol 269(1):88–95

    Article  CAS  Google Scholar 

  96. Zhang ZQ, Chen H, Lai LH (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinf 23(17):2218–2225

    Article  CAS  Google Scholar 

  97. Zhang JP, Liu DDW (2011) Molecular dynamics studies on the structural stability of wild-type dog prion protein. J Biomol Struct Dyn 28(6):861–869

    Article  CAS  PubMed  Google Scholar 

  98. Zheng J, Ma BY, Tsai CJ, Nussinov R (2006) Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion Sup-35. Biophy J 91(3):824–833

    Article  CAS  Google Scholar 

  99. Zhou GP, Deng MH (1984) An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem J 222(1):169–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). Hybrid Method of Discrete Gradient with Simulated Annealing or Genetic Algorithm. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_12

Download citation

Publish with us

Policies and ethics