Skip to main content

Gaussian Beam Tunneling Through a Gyrotropic-Nihility Finely-Stratified Structure

  • Chapter
  • First Online:
Contemporary Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

Abstract

The three-dimensional Gaussian beam transmission through a ferrite-semiconductor finely-stratified structure being under an action of an external static magnetic field in the Faraday geometry is considered. The beam field is represented by an angular continuous spectrum of plane waves. In the long-wavelength limit, the studied structure is described as a gyroelectromagnetic medium defined by the effective permittivity and effective permeability tensors. The investigations are carried out in the frequency band where the real parts of the on-diagonal elements of both effective permittivity and effective permeability tensors are close to zero while the off-diagonal ones are non-zero. In this frequency band the studied structure is referred to a gyrotropic-nihility medium. It is found out that a Gaussian beam keeps its parameters unchanged (beam width and shape) when passing through the layer of such a medium except of a portion of the absorbed energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The series \(\exp ({\mathbf{X}}) = {\mathbf{I}} + \sum\nolimits_{m = 1}^{\infty } {\frac{1}{m!}{\mathbf{X}}^{m} }\) converges for square matrices \({\mathbf{X}}\), i.e. function \(\exp ({\mathbf{X}})\) is defined for all square matrices [25].

References

  1. A. Lakhtakia, An electromagnetic trinity from “negative permittivity” and “negative permeability”. Int. J. Infrared Millimeter Waves 22, 1731–1734 (2001)

    Article  Google Scholar 

  2. S. Tretyakov, I. Nefedov, A.H. Sihvola, S. Maslovki, C. Simovski, Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 17, 695–706 (2003)

    Article  Google Scholar 

  3. C.-W. Qiu, N. Burokur, S. Zouhdi, L.-W. Li, Chiral nihility effects on energy flow in chiral materials. J. Opt. Soc. Am. A 25, 55–63 (2008)

    Article  ADS  Google Scholar 

  4. V. Tuz, C.-W. Qiu, Semi-infnite chiral nihility photonics: parametric dependence, wave tunelling and rejection. Prog. Electromagn. Res. 103, 139–152 (2010)

    Article  Google Scholar 

  5. V.R. Tuz, M.Y. Vidil, S.L. Prosvirnin, Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance. J. Opt. 12, 095102 (2010)

    Article  ADS  Google Scholar 

  6. E. Prati, Propagation in gyroelectromagnetic guiding systems. J. Electromagn. Waves Appl. 17, 1177–1196 (2003)

    Article  Google Scholar 

  7. R.H. Tarkhanyan, D.G. Niarchos, Effective negative refractive index in ferromagnet-semiconductor superlattices. Opt. Express 14, 5433–5444 (2006)

    Article  ADS  Google Scholar 

  8. A.V. Ivanova, O.A. Kotelnikova, V.A. Ivanov, Gyrotropic left-handed media: energy flux and circular dichroism. J. Magn. Magn. Mat. 300, e67–e69 (2006)

    Article  ADS  Google Scholar 

  9. R.X. Wu, T. Zhao, J.Q. Xiao, Periodic ferrite–semiconductor layered composite with negative index of refraction. J. Phys. Condens. Matter 19, 026211 (2007)

    Article  ADS  Google Scholar 

  10. O.V. Shramkova, Transmission spectra in ferrite-semiconductor periodic structure. Prog. Electromagn. Res. M 7, 71–85 (2009)

    Article  Google Scholar 

  11. V.R. Tuz, O.D. Batrakov, Y. Zheng, Gyrotropic-nihility in ferrite-semi-conductor composite in Faraday geometry. Prog. Electromagn. Res. B 41, 397–417 (2012)

    Article  Google Scholar 

  12. Yi Jin, Sailing He, Focusing by a slab of chiral medium. Opt. Express 13, 4974–4979 (2005)

    Article  ADS  Google Scholar 

  13. S.N. Shulga, Two-dimensional wave beam scattering on an anisotropic half-space with anisotropic inclusion. Opt. Spectrosc. 87, 503–509 (1999)

    Google Scholar 

  14. A.V. Malyuskin, D.N. Goryushko, S.N. Shulga, A.A. Shmatko, in Scattering of a Wave Beam by Inhomogeneous Anisotropic Chiral Layer. International conference on mathematical methods EM theory (MMET 2002), Kyiv, Ukraine, pp. 566–568, 10–13 Sept 2002

    Google Scholar 

  15. T.M. Grzegorczyk, X. Chen, J. Pacheco Jr, J. Chen, B.-I. Wu, J.A. Kong, Reflection coefficients and Goos–Hänchen shifts in anisotropic and bianisotropic left-handed metamaterials. Prog. Electromagn. Res. 51, 83–113 (2005)

    Article  Google Scholar 

  16. W.T. Dong, L. Gao, C.-W. Qiu, Goos-Hänchen shift at the surface of chiral negative refractive media. Prog. Electromagn. Res. 90, 255–268 (2009)

    Article  Google Scholar 

  17. R.-L. Chern, P.-H. Chang, Negative refraction and backward wave in pseudochiral mediums: illustrations of Gaussian beams. Opt. Express 21, 2657–2666 (2013)

    Article  ADS  Google Scholar 

  18. R.-L. Chern, P.-H. Chang, Negative refraction and backward wave in chiral mediums illustrations of Gaussian beams. J. Appl. Phys. 113, 153504 (2013)

    Article  ADS  Google Scholar 

  19. K.M. Luk, A.L. Cullen, Three-dimensional Gaussian beam reflection from short-circuited isotropic ferrite slab. IEEE Trans. Antennas Propag. 41, 962–966 (1993)

    Article  ADS  Google Scholar 

  20. V. Tuz, Three-dimensional Gaussian beam scattering from a periodic sequence of bi-isotropic and material layers. Prog. Electromagn. Res. B 7, 53–73 (2008)

    Article  Google Scholar 

  21. A.G. Gurevich, Ferrites at Microwave Frequencies (Heywood, 1963)

    Google Scholar 

  22. R.E. Collin, Foundation for Microwave Engineering (Wiley, New York, 1992)

    Google Scholar 

  23. F.G. Bass, A.A. Bulgakov, Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices (Nova Science, 1997)

    Google Scholar 

  24. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill Book Co., 1968)

    Google Scholar 

  25. V.A. Jakubovich, V.H. Starzhinskij, Linear Differential Equations with Periodic Coefficients (Wiley, New York, 1975)

    Google Scholar 

  26. A. Lakhtakia, C.M. Krowne, Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity materials (alias left-handed material). Optik 114, 305–307 (2003)

    Article  ADS  Google Scholar 

  27. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  28. V.V. Shevchenko, Forward and backward waves: Three definitions and their interrelation and applicability. Phys.-Usp. 50, 287–290 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported (V.R. Tuz) by Ministry of Education and Science of Ukraine under the Program “Electrodynamics of layered composites with chiral properties and multifunctional planar systems”, Project No. 0112 U 000561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Tuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tuz, V.R., Fesenko, V.I. (2016). Gaussian Beam Tunneling Through a Gyrotropic-Nihility Finely-Stratified Structure. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics