Skip to main content

Organic Nanomaterials with Two-Photon Absorption Properties for Biomedical Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

Abstract

During recent years there have been notorious advances in the development of organic molecules and π-conjugated polymers with two-photon activity, i.e., emission of fluorescence promoted by the molecular absorption of two photons. Novel organic materials have reached very large two-photon activity, and many of them have been processed successfully into nanostructured platforms. In contrast to their inorganic counterpart, organic nanoparticles with photonic properties is a topic that so far has not been well explored, although deserves big potential in biomedical applications. This chapter presents recent advances in this field, particularly, in the use of organic nanoparticles as contrast agents to obtain bioimages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescent microscopy. Science 248(6), 73–76 (1990)

    Article  ADS  Google Scholar 

  2. H.H. Fang, Q.D. Chen, J. Yang, H. Xia, Y.-G. Ma, H.-Y. Wang, H.-B. Sun, Two-photon excited highly polarized and directional upconversion emission from slab organic crystals. Opt. Lett. 35(3), 441–443 (2010)

    Article  ADS  Google Scholar 

  3. H. Guang, Y. Lixiang, P.N. Prasad, A. Abbotto, A. Facchetti, G.A. Pagani, Two-photon pumped frequency-upconversion lasing of a new blue-green dye material. Opt. Commun. 140(1–3), 49–52 (1997)

    ADS  Google Scholar 

  4. J.E. Ehrlich, X.L. Wu, I.-Y.S. Lee, Z.-Y. Hu, H. Röckel, S.R. Marder, J.W. Perry, Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt. Lett. 22(24), 1843–1845 (1997)

    Article  ADS  Google Scholar 

  5. P. Wei, O.F. Tan, Y. Zhu, G.H. Duan, Axial superresolution of two-photon microfabrication. Appl. Opt. 46(18), 3694–3699 (2007)

    Article  ADS  Google Scholar 

  6. N.S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, H. Spahni, Optimization two-photon absorption for volumetric storage. J. Opt. Soc. Am. B 24(8), 1874–1885 (2007)

    Article  ADS  Google Scholar 

  7. S.J. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.L. Brédas, S.R. Marder, J.W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections: Aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection. J Am Chem Soc. 126(30), 9291–9306 (2004)

    Article  Google Scholar 

  8. S. Kim, T.Y. Ohulchanskyy, H.E. Pudavar, R.K. Pandey, P.N. Prasad, Organically modified silica nanoparticles co-encapsulating photosensitizing drugs and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two photon therapy. J. Am. Chem. Soc. 129(9), 2669–2675 (2007)

    Article  Google Scholar 

  9. M. Khurana, H.A. Collins, A. Karotki, H.L. Anderson, D.T. Cramb, B.C. Wilson, Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. Photochem. Photobio. 83(6), 1441–1448 (2007)

    Article  Google Scholar 

  10. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. (Leipzig) 9, 273 (1931)

    Article  Google Scholar 

  11. M.C. Rumi, J.W. Perry, Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2(4), 451–518 (2010)

    Article  Google Scholar 

  12. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE LEOS NEWSLETTER 21(1), 17–26 (2007). (Special 30th Anniversary Feature)

    Google Scholar 

  13. L. Antonov, K. Kamada, K. Ohta, Estimation of two-photon absorption characteristic by a global fitting procedure. Appl. Spectrosc. 56(11), 1508–1511 (2002)

    Article  ADS  Google Scholar 

  14. K. Kamada, K. Ohta, Y. Iwase, K. Kondo, Two-photon absorption properties of symmetric substituted diacetylene: drastic enhanced of the cross section near the one-photon absorption peak. Chem. Phys. Lett. 372(3–4), 386–393 (2003)

    Article  ADS  Google Scholar 

  15. C. Xu, W.W. Webb, Measurement of two-photon excitation cross section of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13(3), 481–491 (1996)

    Article  ADS  Google Scholar 

  16. A. Taouri, H. Derbal, J.M. Nunzi, R. Mountasser, M. Sylla, Two-photon absorption cross-section measurement by thermal lens and nonlinear transmission methods in organic materials at 532 and 1064 nm laser excitation. J. Optoelectronic Adv. Mater. 11(11), 1696–1703 (2009)

    Google Scholar 

  17. C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, C.P.G. Vallabhan, Investigation of nonlinear absorption and aggregation in aqueous solution of rhodamine B using thermal lens technique. PRAMANA-J. Phys. 52(4), 435–442 (1999)

    Article  ADS  Google Scholar 

  18. C.V. Bindhu, S.S. Harilal, R.C. Issac, G.K. Varier, V.P.N. Nampoori, C.P.G. Vallabhan, Pulsed photoacoustic technique to study nonlinear processes in liquids: results in toluene. PRAMANA-J. Phys. 44(3), 231–235 (1995)

    Article  ADS  Google Scholar 

  19. M.A. Albota, C. Xu, W.W. Webb, Two-photon fluorescence excitation cross section of biomolecular probes from 690 to 960 nm. App. Opt. 37(31), 7352–7356 (1998)

    Article  ADS  Google Scholar 

  20. G.S. He, L.-S. Tan, Q. Zheng, P.N. Prasad, Multiphoton absorbing materials: molecular design, characterizations and applications. Chem. Rev. 108(4), 1245–1330 (2008)

    Article  Google Scholar 

  21. M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson, Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48(18), 3244–3266 (2009)

    Article  Google Scholar 

  22. M. Rumi, J.E. Ehrlich, A.A. Heikal, J.W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T.C. Parker, H. Röckel, S. Thayumanavan, S.R. Marder, D. Beljonne, J.-L. Brédas, Structure-property relationship for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styrylbenzene derivatives). J. Am. Chem. Soc. 122(39), 9500–9510 (2000)

    Article  Google Scholar 

  23. B.A. Reinhardt, L.L. Brott, S.J. Clarson, A.G. Dillard, J.C. Bhatt, R. Kannan, L. Yuan, G.S. He, P.N. Prasad, Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem. Mater. 10(7), 1863–1874 (1998)

    Article  Google Scholar 

  24. H.M. Kim, B.R. Cho, Two-photon materials with large two photon cross section. Structure property relationship. Chem. Commun. 2, 153–164 (2009)

    Google Scholar 

  25. F. NicoudJ, F. Bolze, X.-H. Sun, A. Hayek, P. Baldeck, Boron-containing two-photon absorbing chromophores. 3(1) one- and two-photon photophysical properties of p-carborane-containing fluorescent bioprobes. Inorg. Chem. 50(10), 4272–4278 (2011)

    Article  Google Scholar 

  26. H.Y. Woo, B. Liu, B. Kholer, D. Korystov, A. Mikhailovsky, G.C. Bazan, Solvent effects on the two-photon absorption of distyrylbenzene chromophores. J. Am. Chem. Soc. 127(42), 14721–14729 (2005)

    Article  Google Scholar 

  27. P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Nanoparticles for bioimaging. Adv. Colloid Interface Sci. 123–126, 471–485 (2006)

    Article  Google Scholar 

  28. H. Kasai, H.S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, H. Nakanishi, A novel preparation method of organic microcrystals. Jpn. J. Appl. Phys 3l, L1132 (1992)

    Article  Google Scholar 

  29. S. Kim, Q. Zheng, G.S. He, D.J. Bharali, H.E. Pudavar, A. Baev, P.N. Prasad, Aggregation-enhanced fluorescence and two-photon absorption in nanoaggregates of a 9,10-bis[4′-(4″-aminostyryl)styryl]anthracene derivative. Adv. Funct. Mater. 16, 2317–2323 (2006)

    Article  Google Scholar 

  30. J. Rodríguez-Romero, L. Aparicio-Ixta, M. Rodríguez, G. Ramos-Ortíz, J.L. Maldonado, A. Jiménez-Sánchez, N. Farfán, R. Santillan, Synthesis, chemical-optical characterization and solvent interaction effect of novel fluorene-chromophores with D-A-D structure. Dyes Pigm. 98(1), 31–41 (2013)

    Article  Google Scholar 

  31. Y. Tian, C.-Y. Chen, Y.-J. Cheng, A.C. Young, N.M. Tucker, A.K.-Y. Jen, Hydrophobic chromophores in aqueous micellar solution showing large two-photon absorption cross sections. Adv. Funct. Mater. 17(10), 1691–1697 (2007)

    Article  Google Scholar 

  32. K. Baba, T.Y. Ohulchanskyy, Q. Zheng, T.C. Lin, E.J. Bergey, P.N. Prasad, Infrared emitting dye and/or two photon excitable fluorescent dye encapsulated in biodegradable polymer nanoparticles for bioimaging. Mater. Res. Soc. Symp. Proc. 845, 209–214 (2005)

    Google Scholar 

  33. Q. Zheng, T.Y. Ohulchanskyy, Y. Sahoo, P.N. Prasad, Water-dispersible polymeric structure co-encapsulation a novel hexa-peri-hexabenzocoronene core containing chromophore with enhanced two-photon absorption an magnetic nanoparticles for magnetically guided two-photon cellular imaging. J. Phys. Chem. C 111(45), 16846–16851 (2007)

    Article  Google Scholar 

  34. W.-C. Wu, C.-Y. Chen, Y. Tian, S.-H. Jang, Y. Hong, Y. Liu, R. Hu, B.Z. Tang, Y.-T. Lee, C.-T. Chen, W.-C. Chen, A.K.-Y. Jen, Enhancement of aggregation-induced emission in dye-encapsulating polymeric micelles for bioimaging. Adv. Funct. Mater. 20, 1413–1423 (2010)

    Article  Google Scholar 

  35. T.T. Morgan, H.S. Muddana, Eİ. Altinoğ, S.M. Rouse, A. Tabaković, T. Tabouillot, T.J. Russin, S.S. Shanmugavelandy, P.J. Butler, P.C. Eklund, J.K. Yun, M. Kester, J.H. Adair, Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. NanoLett. 8(12), 4108–4115 (2008)

    Article  ADS  Google Scholar 

  36. T.Y. Ohulchanskyy, I. Roy, K.-T. Yong, H.E. Pudavar, P.N. Prasad, High-resolution light microscopy using luminescent nanoparticles. WIREs Nanomed. Nanobiotechnol. 2(2), 162–175 (2010)

    Article  Google Scholar 

  37. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morère, M. Garcia, J.-O. Durand, L. Raehm, Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chem. 123(48), 11627–11631 (2011)

    Article  Google Scholar 

  38. C. Rouxel, M. Charlot, Y. Mir, C. Frochot, O. Mongin, M. Blanchard-Desce, Banana-shaped biophotonics quadrupolar chromophores: from fluorophores to biophotonic photosensitizers. New J. Chem. 35, 1771–1780 (2011)

    Article  Google Scholar 

  39. S. Kim, H.E. Pudavar, A. Bonoiu, P.N. Prasad, Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 19(22), 3791–3795 (2007)

    Article  Google Scholar 

  40. Z. Zhao, B. Chen, J. Geng, Z. Chang, L. Aparicio-Ixta, H. Nie, C.C. Goh, L.G. Ng, A. Qin, G. Ramos-Ortiz, B. Liu, B. Zhong, Red emissive biocompatible nanoparticles from tetraphenylethene-decorated BODIPY luminogens for two-photon excited fluorescence cellular imaging and mouse brain blood vascular visualization. Part. Part. Syst. Charact. 31(4), 481–491 (2014)

    Article  Google Scholar 

  41. L. Aparicio-Ixta, G. Ramos-Ortiz, J.L. Pichardo-Molina, J.L. Maldonado, M. Rodríguez, V.M. Tellez-Lopez, D. Martinez-Fong, M.G. Zolotukhin, S. Fomine, M.A. Meneses-Nava, O. Barbosa-García, Two-photon excited fluorescence of silica nanoparticles loaded with a fluorene-based monomer and its cross-conjugated polymer: their application to cell imaging. Nanoscale 4, 7751–7759 (2012)

    Article  ADS  Google Scholar 

  42. S. Krol, R. Macrez, F. Docagne, G. Defer, S. Laurent, M. Rahman, M.J. Hajipour, P. Kehoe, M. Mahmoudi, Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the bold brain barrie. Chem. Rev. 113(3), 1877–1903 (2013)

    Article  Google Scholar 

  43. P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000)

    Article  Google Scholar 

  44. P. HermannJ, J. Ducuing, Dispersion of the two-photon cross section in rhodamine dyes. Opt. Commun. 6(2), 101–105 (1972)

    Article  ADS  Google Scholar 

  45. N.S. Makarov, M. Drobizhev, A. Rebane, Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt. Express 16(6), 4029–4047 (2008)

    Article  ADS  Google Scholar 

  46. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Berlin, 2010). 2010

    Google Scholar 

  47. K. Svoboda, R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006)

    Article  Google Scholar 

  48. S.S. Agasti, S. Rana, M.-H. Park, C. Kim, C.-C. You, V. Rotello, Nanoparticles for detection and diagnostic. Adv. Drug Delivery Rev. 62(3), 316–328 (2010)

    Article  Google Scholar 

  49. M.-Q. Zhu, G.-F. Zhang, C. Li, M. Aldred, E. Chang, R. Drezek, A.D.Q. Li, Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles target to cancer cells. J. Am. Chem. Soc. 133(2), 365–372 (2011)

    Article  Google Scholar 

  50. X. Diao, W. Li, J. Yu, X. Wang, X. Zhang, Y. Yang, F. An, Z. Liu, X. Zhang, Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging. Nanoscale 4, 5373–5377 (2012)

    Article  ADS  Google Scholar 

  51. K. Li, Y. Jiang, D. Ding, X. Zhang, Y. Liu, J. Hua, S.S. Feng, B. Liu, Folic acid-functionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. Chem. Commun. 47, 7323–7325 (2011)

    Article  Google Scholar 

  52. N.A. Abdul, W. McDaniel, K. Bardon, S. Srinivasan, V. Vickerman, P.T.C. So, J. Ho, Conjugated polymer nanoparticles for two-photon imaging of endothelial cells in a tissue model. Adv. Mater. 21, 3492–3496 (2009)

    Article  Google Scholar 

  53. J. QianYao, K.-T. Yong, I. Roy, T.Y. Ohulchanskyy, E.J. Bergey, Imaging pancreatic cancer using surface-functionalized quantum dots. J. Phys. Chem. B 111, 6969–6972 (2007)

    Article  Google Scholar 

  54. M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in TM3+ and Yb3+ doped fluoride nanophosphors. NanoLett. 8, 3834–3838 (2008)

    Article  ADS  Google Scholar 

  55. S. Santra, P. Zhang, K.M. Wang, R. Tapec, W.H. Tan, Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988–4993 (2001)

    Article  Google Scholar 

  56. J.E. Smith, C.D. Medley, Z.W. Tang, D. Shangguan, C. Lofton, W.H. Tan, Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79, 3075–3082 (2007)

    Article  Google Scholar 

  57. G. Yao, L. Wang, Y.R. Wu, J. Smith, J.S. Xu, W.J. Zhao, E.J. Lee, W.H. Tan, FloDots: luminescent nanoparticles. Anal. Bioanal. Chem. 385, 518–524 (2006)

    Article  Google Scholar 

  58. S.H. Kim, H. Huang, H.E. Pudavar, Y.P. Cui, P.N. Prasad, Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging. Chem. Mater. 19, 5650–5656 (2007)

    Article  Google Scholar 

  59. X. Wang, S. Yao, H.-Y. Ahn, Y. Zhang, M.V. Bondar, J.A. Torres, K.D. Belfield, Folate receptor targeting silica nanoparticles probe for two-photon fluorescence bioimaging. Biomed. Opt. Express 1(2), 453–462 (2010)

    Article  Google Scholar 

  60. X. Wang, A.R. Morales, T. Urakami, L. Zhang, M. Bondar, M. Komatsu, K.D. Belfield, Folate receptor-target aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjugate Chem. 22(7), 1438–1450 (2011)

    Article  Google Scholar 

  61. J. Park, A. Estrada, K. Sharp, K. Sang, J. Schwartz, D. Smith, C. Coleman, J.D. Payne, B.A. Korgel, A. Dunn, J.W. Tunell, Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt. Express 16(3), 1590–1599 (2008)

    Article  ADS  Google Scholar 

  62. W.-C. Law, K.-T. Yong, I. Roy, G. Xu, H. Ding, E.J. Bergey, H. Zeng, P.N. Prasad, Optically and magnetically doped modified silica nanoparticles as efficient magnetically guide biomarker for two-photon imaging of live cells. J. Phys. Chem. C. 112(21), 7972–7977 (2008)

    Article  Google Scholar 

  63. J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe, S. Verma, B.W. Pogue, T. Hasan, Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem. Rev. 110(5), 2795–2838 (2010)

    Article  Google Scholar 

  64. M. Triesscheijn, P. Baas, J.H.M. Schellens, F. Stewart, Photodynamic therapy in oncology. Oncologist 11, 1034–1044 (2006)

    Article  Google Scholar 

  65. N. He, B. Li, H. Zhang, J. Hua, S. Jiang, Synthesis, two-photon absorption and optical limiting properties of new linear and multi-branched bithiazole-based derivatives. Synth. Met. 162, 217–224 (2012)

    Article  Google Scholar 

  66. X. Shen, L. Li, A.C.M. Chan, N. Gao, S.Q. Yao, Q.-H. Xu, Water-soluble conjugated polymers for simultaneous Two-photon cell imaging and Two-photon photodynamic therapy. Adv. Opt. Mater. 1, 92–99 (2013)

    Article  Google Scholar 

  67. L. Kelbauskas, W. Dietel, Internalization of aggregated photosensitizer by tumor cells: subcellular time-revolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitation. Photochem. Photobiol. 76(6), 686–694 (2002)

    Article  Google Scholar 

  68. S. Kim, T.Y. Ohulchanssky, H.E. Pudavar, R.K. Pandey, P.N. Prasad, Organically modified silica nanoparticles coencapsulating photosensitizing drug and aggregation-enhanced two photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 129, 2669–2675 (2007)

    Article  Google Scholar 

  69. W.R. Dichtel, J.M. Serin, C. Edder, J.M.J. Fréchet, M. Matuszewski, L.-S. Tang, T.Y. Ohulchanskyy, P.N. Prasad, Singlet oxygen generation via two-photon excited FRET. J. Am. Chem. Soc. 126(17), 5380–5381 (2004)

    Article  Google Scholar 

  70. M.A. Oar, J.M. Serin, W.R. Dichtel, J.M. Fréchet, Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in water-soluble dendrimer. Chem. Mater. 17, 2267–2275 (2005)

    Article  Google Scholar 

  71. X. Shen, F. He, J. Wu, G.Q. Xu, S.Q. Yao, Q.-H. Xu, Enhanced two-photon singlet oxygen generation by photosensitizer-doped conjugate polymer nanoparticles. Langmuir 27(5), 1739–1744 (2011)

    Article  Google Scholar 

  72. K.S. Samkoe, A.A. Clancy, A. Karotki, B.C. Wilson, D.T. Cramb, Complete blood vessel occlusion in the chick chrioallantonic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. J. Biomed. Opt. 12(3), 034025-1–034025-14 (2007)

    Article  ADS  Google Scholar 

  73. S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, L.-W. Lo, Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy. Nano Today 6, 552–563 (2011)

    Article  Google Scholar 

  74. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, O. Hocine, M. Maynadier, A. Gallud, A. Silva, O. Mongin, M. Blanchard-Desce, S. Richeter, B. Loockd, P. Maillard, A. Morère, M. Garcia, L. Raehm, J.-O. Durand, Multifuntionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug deliver, one and two-photon photodynamic therapy. Int. J. Pharm. 432, 99–104 (2012)

    Article  Google Scholar 

  75. J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, S. He, Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 33(19), 4851–4860 (2012)

    Article  Google Scholar 

  76. C. Huang, C. Lin, A. Ren, N. Yang, Dicyanostilbene-derived two-photon fluorescence dyes with large two-photon absorption cross sections. J. Mol. Struct. 1006(1–3), 91–95 (2011)

    Article  ADS  Google Scholar 

  77. Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, G. Qian, Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission. Dyes Pigm. 97(1), 58–64 (2013)

    Article  Google Scholar 

  78. D. Xu, Z. Yu, M. Yang, Z. Zheng, L. Zhu, X. Zhang, L. Ye, J. Wu, Y. Tian, H. Zhou, 2,20-Bipyridine derivatives containing aza-crown ether: structure, two-photon absorption and bioimaging. Dyes Pigm. 100, 142–149 (2014)

    Article  Google Scholar 

  79. C. Huang, X. Peng, D. Yi, J. Qu, H. Niu, Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: detection of solvent polarities, viscosities, and temperature. Sens. Actuators B 182, 521–529 (2013)

    Article  Google Scholar 

  80. F. Hao, Z. Liu, M. Zhang, J. Liu, S. Zhang, J. Wu, H. Zhou, Y.-P. Tian, Four new two-photon polymerization initiators with varying donor and conjugated bridge: Synthesis and two-photon activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 538–542 (2014)

    Article  ADS  Google Scholar 

  81. H.A. Collins, M. Khurana, E.H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M.K. Kuimova, M. Drobizhev, V.X.D. Yang, D. Phillips, A. Rebane, B.C. Wilson, H.L. Anderson, Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nature Photonics 2, 420–424 (2008)

    Article  Google Scholar 

  82. A.R. Morales, G. Luchita, C.O. Yanez, M.V. Bondar, O.V. Przhonska, K.D. Belfield, Linear and nonlinear photophysics and bioimaging of an integrin-targeting water-soluble fluorenyl probe. Org. Biomol. Chem. 8(11), 2600–2608 (2010)

    Article  Google Scholar 

  83. N. Aratani, D. Kim, A. Osuka, π-conjugation enlargement toward the creation of multi-porphyrinic systems with large two-photon absorption properties. Chem. Asian J. 4(8), 1172–1182 (2009)

    Article  Google Scholar 

  84. T.K. Ahn, K.S. Kim, D.Y. Kim, S.B. Noh, N. Aratani, C. Ikeda, A. Osuka, D. Kim, Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control. J. Am. Chem. Soc. 128(5), 1700–1704 (2006)

    Article  Google Scholar 

  85. J.E. Raymond, A. Bhaskar, T. Goodson III, N. Makiuchi, K. Ogawa, Y. Kobuke, Synthesis and two-photon absorption enhancement of porphyrin macrocycles. J. Am. Chem. Soc. 130(51), 17212–17213 (2008)

    Article  Google Scholar 

  86. M. Velusamy, J.-Y. Shen, J.T. Lin, Y.-C. Lin, C.-C. Hsieh, C.-H. Lai, C.-W. Lai, M.-L. Ho, Y.-C. Chen, P.-T. Chou, J.-K. Hsia, A new series of quadrupolar type two-photon absorption chromophores bearing 11, 12-dibutoxydibenzo[a, c]-phenazine bridged amines; their applications in two-photon fluorescence imaging and two-photon photodynamic therapy. Adv. Funct. Mater. 19(15), 2388–2397 (2009)

    Article  Google Scholar 

  87. C. Wu, C. Szymanski, Z. Cain, J. McNeill, Conjugated polymer dots for multiphoton fluorescence imaging. J. Am. Chem. Soc. 129(43), 12904–12905 (2007)

    Article  Google Scholar 

  88. Q. Zheng, G. Xu, P.N. Prasad, Conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes: highly fluorescent, multicolored probes for cellular imaging. Chem. Eur. J. 14, 5812–5819 (2008)

    Article  Google Scholar 

  89. S. Zeng, X. Ouyang, H. Zeng, W. Ji, Z. Ge, Synthesis, tunable two and three-photon absorption properties of triazine derivatives by branches. Dyes Pigm. 94(2), 290–295 (2012)

    Article  Google Scholar 

  90. T.-C. Lin, Y.-H. Lee, B.-R. Huang, C.-L. Hu, Y.-K. Li, Two-photon absorption and effective optical power-limiting properties of small dendritic chromophores derived from functionalized fluorene/oxadiazole units. Tetrahedron 68(25), 4935–4949 (2012)

    Article  Google Scholar 

  91. Y. Jiang, Y. Wang, J. Hua, J. Tang, B. Li, S. Qian, H. Tian, Multibranchedtriarylamine end-capped triazines with aggregation induced emission and large two-photon absorption cross-sections. Chem. Commun. 46, 4689–4691 (2010)

    Article  Google Scholar 

  92. R. Castro-Beltran, G. Ramos-Ortiz, C.K.W. Jim, J.L. Maldonado, M. Häußler, D. Peralta-Dominguez, M.A. Meneses-Nava, O. Barbosa-Garcia, B.Z. Tang, Optical nonlinearities in hyperbranched polyyne studied by two-photon excited fluorescence and third-harmonic generation spectroscopy. Appl. Phys. B 97, 489–496 (2009)

    Article  ADS  Google Scholar 

  93. Y. Wan, L. Yan, Z. Zhao, X. Ma, Q. Guo, M. Jia, P. Lu, G. Ramos-Ortiz, J.L. Maldonado, M. Rodríguez, A. Xia, Gigantic two-photon absorption cross sections and strong two-photon excited fluorescence in pyrene core dendrimers with fluorene/carbazole as dendrons and acetylene as linkages. J. Phys. Chem. B 114, 11737–11745 (2010)

    Article  Google Scholar 

  94. H. Xiao, C. Mei, B. Li, N. Ding, Y. Zhang, T. Wei, Synthesis, solvatochromism and large two-photon absorption cross-sections of water-soluble dipicolinate-based pyridinium salts. Dyes Pigm. 99, 1051–1055 (2013)

    Article  Google Scholar 

  95. M. Drobizhev, A. Karotki, A. Rebane, Dendrimer molecules with record large two-photon absorption cross section. Opt. Lett. 26(14), 1081–1083 (2001)

    Article  ADS  Google Scholar 

  96. N. Rendón, A. Bourdolle, P.L. Baldeck, H. Le, C. Andraud, S. Brasselet, C. Copéret, O. Maury, Bright luminescent silica nanoparticles for two-photon microscopy imaging via controlled formation of 4,4′-diethylaminostyryl-2, 2′-bipyridine Zn(II) surface complexes. Chem. Mater. 23, 3228–3236 (2011)

    Article  Google Scholar 

  97. A. Narayanan, O. Varnavski, O. Mongin, J.-P. Majoral, M. Blanchard-Desce, T. Goodson III, Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing. Nanotechnology 19, 115502 (2008). (6 p)

    Article  ADS  Google Scholar 

  98. H. Wang, T.B. Hufft, D.A. Zweifelt, W. Het, P.S. Lowt, A. Weit, J.-X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods. PNAS 102(4), 15752–15756 (2005)

    Article  ADS  Google Scholar 

  99. D.R. Warren, R. Zipfel, R. Williams, S. Clark, M. Bruchez, F. Wise, W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 30, 1434–1436 (2003)

    Google Scholar 

Download references

Acknowledgements

G. Ramos-Ortiz thanks financial support from the National Mexican Agency for Science and Technology (Conacyt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ramos-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aparicio-Ixta, L., Rodriguez, M., Ramos-Ortiz, G. (2016). Organic Nanomaterials with Two-Photon Absorption Properties for Biomedical Applications. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics