Skip to main content

All-Normal-Dispersion Photonic Crystal Fibers Under Prism of Supercontinuum Generation and Pulse Compression

  • Chapter
  • First Online:
  • 1432 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

Abstract

We discuss properties of all-normal-dispersion photonic crystal fibers in context of supercontinuum generation and compression of ultrashort pulses. The application of pump pulses typical for the state of the art Ti:Sapphire lasers allows obtaining quite flat and broad spectra extending more than one octave in this fiber. The influence of initial pump pulse parameters such as pulse energy, duration, and pump wavelength on the SC generation was investigated. It was shown that compression of pulses with such SC spectra allows obtaining a few cycle pulses up to 8.1 fs, if a simple quadratic compressor is used and single cycle pulses up to 2.5 fs, if full phase compensation is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.R. Alfano, S.L. Shapiro, Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24(11), 584–587 (1970)

    Article  ADS  Google Scholar 

  2. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24(11), 592–594 (1970)

    Article  ADS  Google Scholar 

  3. R.R. Alfano, The Supercontinuum Laser Source, 2nd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  4. J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge 2010)

    Google Scholar 

  5. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

    Article  ADS  Google Scholar 

  6. S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, P. Russell, St. J. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett. 26(17), 1356–1358 (2001)

    Article  ADS  Google Scholar 

  7. L. Provino, J.M. Dudley, H. Maillotte, N. Grossard, R.S. Windeler, B.J. Eggleton, Compact broadband continuum source based on microchip laser pumped microstructured fibre. Electron. Lett. 37(9), 558–560 (2001)

    Article  Google Scholar 

  8. A.K. Abeeluck, C. Headley, C.G. Jørgensen, High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Opt. Lett. 29(18), 2163–2165 (2004)

    Article  ADS  Google Scholar 

  9. A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003)

    Google Scholar 

  10. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424, 511–515 (2003)

    Article  ADS  Google Scholar 

  11. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)

    Article  ADS  Google Scholar 

  12. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W. Wadsworth, P.S.J. Russell, G. Korn, Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic crystal fibers. Phys. Rev. Lett. 88(17), 173901 (2002)

    Article  ADS  Google Scholar 

  13. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A.P. Shreenath, R. Trebino, R.S. Windeler, Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt. Lett. 27(13), 1174–1176 (2002)

    Article  ADS  Google Scholar 

  14. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90(11), 113904 (2003)

    Article  ADS  Google Scholar 

  15. N.R. Newbury, B.R. Washburn, K.L. Corwin, Noise amplification during supercontinuum generation in microstructure fiber. Opt. Lett. 28(11), 944–946 (2003)

    Article  ADS  Google Scholar 

  16. K.M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, J. Larsen, Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt. Express 12(6), 1045–1054 (2004)

    Article  ADS  Google Scholar 

  17. M. Frosz, P. Falk, O. Bang, The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. Opt. Express 13(16), 6181–6192 (2005)

    Article  ADS  Google Scholar 

  18. M.-L.V. Tse, P. Horak, F. Poletti, N.G. Broderick, J.H. Price, J.R. Hayes, D.J. Richardson, Supercontinuum generation at 1.06 µm in holey fibers with dispersion flattened profiles. Opt. Express 14(10), 4445–4451 (2006)

    Article  ADS  Google Scholar 

  19. A.M. Heidt, A. Hartung, G.W. Bosman, P. Krok, E.G. Rohwer, H. Schwoerer, H. Bartelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19(4), 3775–3787 (2011)

    Article  ADS  Google Scholar 

  20. L.E. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19(6), 4902–4907 (2011)

    Article  ADS  Google Scholar 

  21. A.M. Heidt, Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27(3), 550–559 (2010)

    Article  ADS  Google Scholar 

  22. Nonlinear Photonic Crystal Fiber NL-1050-NEG-1. http://www.nktphotonics.com

  23. I.A. Sukhoivanov, S.O. Iakushev, O.V. Shulika, A. Díez, M. Andrés, Femtosecond parabolic pulse shaping in normally dispersive optical fibers. Opt. Express 21(15), 17769–17785 (2013)

    Article  ADS  Google Scholar 

  24. S.O. Iakushev, O.V. Shulika, I.A. Sukhoivanov, Sub-10-fs pulses produced from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber, in Technical Digest of conference on Frontiers in Optics 2012/Laser Science XXVIII, October 14–18, Rochester, NY, FW3A.41 (2012)

    Google Scholar 

  25. I.A. Sukhoivanov, J.A. Andrade Lucio, O.V. Shulika, S.O. Iakushev, A.B. García, G. Ramos-Ortiz, I.V. Guryev, O.G. IbarraManzano, A.G. Perez, (2013) All-normal dispersion photonic crystal fiber for parabolic pulses and supercontinuum generation. Proc. SPIE 8847, 88470H-1–88470H-8 (2013)

    Article  Google Scholar 

  26. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, Boston, 2007)

    Google Scholar 

  27. K.J. Blow, D. Wood, Theoretical description of transient stimulated scattering in optical fibers. IEEE J. Quantum Electron. 25(12), 2665–2673 (1989)

    Article  ADS  Google Scholar 

  28. M. Koshiba, K. Saitoh, Applicability of classical optical fiber theories to holey fibers. Opt. Lett. 29(15), 1739–1741 (2004)

    Article  ADS  Google Scholar 

  29. K. Saitoh, M. Koshiba, Empirical relations for simple design of photonic crystal fibers. Opt. Express 13(1), 267–274 (2005)

    Article  ADS  Google Scholar 

  30. J.C. Knight, T.A. Birks, P.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  ADS  Google Scholar 

  31. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  32. J.C. Knight, Photonic crystal fibres. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  33. A.M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E.G. Rohwer, J. Limpert, A. Tünnermann, High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Opt. Express 19(15), 13873–13879 (2011)

    Article  ADS  Google Scholar 

  34. S. Demmler, J. Rothhardt, A.M. Heidt, A. Hartung, E.G. Rohwer, H. Bartelt, J. Limpert, A. Tünnermann, Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19(21), 20151–20158 (2011)

    Article  ADS  Google Scholar 

  35. F.X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, Berlin, 2004)

    Google Scholar 

  36. Y. Liu, H. Tu, S.A. Boppart, Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett. 37(12), 2172–2174 (2012)

    Article  ADS  Google Scholar 

  37. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O. Svelto, Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28(20), 1987–1989 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad de Guanajuato under projects DAIP-633/2015, DAIP-609/2015, and DAIP-430/2014, by FoMix (CONACyT & CONCyTEG) under project GTO-2012-C04-195229, and in part by the Ministerio de Economía y Competitividad under project TEC-2013-46643-C2-1-R, and the Generalitat Valenciana under project PROMETEO II/2014/072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy V. Shulika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sukhoivanov, I.A. et al. (2016). All-Normal-Dispersion Photonic Crystal Fibers Under Prism of Supercontinuum Generation and Pulse Compression. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics