Skip to main content

Nonlinear Plasmonic Waveguides

  • Chapter
  • First Online:
Contemporary Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

  • 1442 Accesses

Abstract

Recent results on plasmonic waveguides are summarized. After a brief introduction to motivate the use of plasmonic structures for optical integrated devices and to present the main characteristics and potential applications, the metal-dielectric-metal slot waveguide is studied. The way to calculate the complex modes , which are necessary for a proper modeling taking optical losses into account, is presented for the linear and nonlinear cases. This calculations are then used to obtain the dispersion curves and to show the way modes transform when losses go from negligible to realistic values. The calculation of nonlinear modes leads to the study of the power dispersion curves considering optical losses and to the comparison with the non lossy case. Also, the way to simulate the propagation of light in this structures, using the finite-difference time-domain technique is discussed. The last part of the text deals with specific devices: nonlinear directional couplers applied to optical power switching . Finally, the use of tapered waveguides for the directional coupler is proposed, as a way to avoid the negative effect of optical loss and to enhance the coupler performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Maier, Plasmonics: fundamentals and applications (Springer, New York, 2007)

    Google Scholar 

  2. D. Sarid, W. Challener, Modern Introduction to Surface Plasmons (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  3. M.L. Brongersma, P.G. Kik (eds.), Surface Plasmon Nanophotonics (Springer, New York, 2007)

    Google Scholar 

  4. A.D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982)

    Google Scholar 

  5. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  6. S.I. Bolzhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  7. H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 81(10), 1762 (2002)

    Article  ADS  Google Scholar 

  8. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 2427 (2004)

    Google Scholar 

  9. R. Yang, M.A.G. Abushagur, Z. Lu, Opt. Expr. 16, 20142 (2008)

    Article  ADS  Google Scholar 

  10. M.I. Stockman, Opt. Expr. 19(22), 22029 (2011)

    Article  ADS  Google Scholar 

  11. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47(11), 2075 (1999)

    Article  ADS  Google Scholar 

  12. J. Homola, S.S. Yee, G. Gauglitz, Seensors Actuat. B 54, 3 (1999)

    Article  Google Scholar 

  13. K.F. MacDonald, Z.L. Sámson, M.I. Stockman, N.I. Zheludev, Nat. Photonics 3, 55 (2009)

    Article  ADS  Google Scholar 

  14. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner, Sol. Energy Mater. Sol. Cells 61, 97 (2000)

    Article  Google Scholar 

  15. K.R. Catchpole, A. Polman, Opt. Expr. 16(26), 21794 (2008)

    Article  ADS  Google Scholar 

  16. J. Zhu, M. Xue, R. Hoekstra, F. Xiu, B. Zeng, K.L. Wang, Nanoscale 4, 1978 (2012)

    Article  ADS  Google Scholar 

  17. E. Feigenbaum, M. Orenstein, Opt. Lett. 32(6), 674 (2007)

    Article  ADS  Google Scholar 

  18. K.Y. Bliohkh, Y.P. Bliokh, A. Ferrando, Phys. Rev. A 79, 041803 (2009)

    Article  ADS  Google Scholar 

  19. C. Milián, D.E. Ceballos-Herrera, D.V. Skryabin, A. Ferrando, Opt. Lett. 37(20), 4221 (2012)

    Article  ADS  Google Scholar 

  20. V.M. Agranovich, V.S. Babichenko, V.Y. Chernyak, Sov. Phys. JETP Lett. 32, 512 (1980)

    ADS  Google Scholar 

  21. G.I. Stegeman, C.T. Seaton, J. Ariyasu, R.F. Wallis, A.A. Maradudin, J. Appl. Phys. 58, 2453 (1985)

    Article  ADS  Google Scholar 

  22. D. Mihalache, G.I. Stegeman, C.T. Seaton, E.M. Wright, R. Zanoni, A.D. Boardman, T. Twardowski, Opt. Lett. 12, 187 (1987)

    Article  ADS  Google Scholar 

  23. A.D. Boardman, A.A. Maradudin, G.I. Stegeman, T. Twardowski, E.M. Wright, Phys. Rev. A 35, 1159 (1987)

    Article  ADS  Google Scholar 

  24. A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Opt. Expr. 16, 21209 (2008)

    Article  ADS  Google Scholar 

  25. N.C. Panoiu, R.M. Osgood, Nano Lett. 4, 2427 (2004)

    Article  ADS  Google Scholar 

  26. W. Fan, S. Zhang, N.C. Panoiu, A. Abdenour, S. Krishna, R.M. Osgood, K.J. Malloy, S.R.J. Brueck, Nano Lett. 6, 1027 (2006)

    Article  ADS  Google Scholar 

  27. J.A.H. van Nieuwstadt, M. Sandke, S. Enoch, L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006)

    Article  ADS  Google Scholar 

  28. A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Opt. Expr. 17(22), 20063 (2009)

    Article  ADS  Google Scholar 

  29. T. Fujisawa, K. Masanori, J. opt. Soc. Am. B 23(4), 684 (2006)

    Article  ADS  Google Scholar 

  30. E.N. Economou, Phys. Rev. B 182, 539 (1969)

    Article  ADS  Google Scholar 

  31. J.J. Burke, G.I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986)

    Article  ADS  Google Scholar 

  32. B. Prade, J.Y. Vinet, A. Mysyrowicz, Phys. Rev. B 44(24), 13556 (1991)

    Article  ADS  Google Scholar 

  33. J.R. Salgueiro, Y. Kivshar, Opt. Expr. 20(9), 9403 (2012)

    Article  ADS  Google Scholar 

  34. T. Yang, K.B. Crozier, Opt. Expr. 17(2), 1136 (2009)

    Article  ADS  Google Scholar 

  35. A.R. Davoyan, W. Liu, A. Miroshnichenko, I. Shadrivov, Y. Kivshar, S.I. Bozhevolnyi, Photonic Nanostruc. Fundam. Appl. 9, 207 (2011)

    Article  ADS  Google Scholar 

  36. S.E. Kocabas, G. Veronis, D.A.B. Miller, S. Fan, Phys. Rev. B 79, 035120 (2009)

    Article  ADS  Google Scholar 

  37. A.R. Davoyan, I.V. Shadrivov, S.I. Bozhevolnyi, Y.S. Kivshar, J. Nanophotonics 4, 043509 (2010). doi:10.1117/1.3437397

    Article  ADS  Google Scholar 

  38. M.S. Kwon, S.Y. Shin, Opt. Comun. 233, 119 (2004)

    Article  ADS  Google Scholar 

  39. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  40. J.R. Salgueiro, Y.S. Kivshar, Appl. Phys. Lett. 97, 081106 (2010)

    Article  ADS  Google Scholar 

  41. S.A. Cummer, I.E.E.E. Trans, Antennas Propagat. 45(3), 392 (1997)

    Article  ADS  Google Scholar 

  42. R.M. Joseph, T. Allen, I.E.E.E. Phot, Tech. Lett. 6(10), 1251 (1994)

    Article  Google Scholar 

  43. I.S. Maksymov, A.S. Sukhorukov, A.V. Lavrinenko, Y.S. Kivshar, IEEE Antennas Wireless Propag. Lett. 10, 143 (2011)

    Article  ADS  Google Scholar 

  44. D.K. Gramotnev, K.C. Vernon, D.F.P. Pile, Appl. Phys. B 93, 99 (2008)

    Article  ADS  Google Scholar 

  45. Z. Chen, T. Holmgaard, S.I. Bozhevolnyi, A.V. Krasavin, A.V. Zayats, L. Markey, A. Dereux, Opt. Lett. 34, 810 (2009)

    Google Scholar 

  46. T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, J. Lightwave Technol. 27, 5521 (2009)

    Article  ADS  Google Scholar 

  47. M. Conforti, M. Guasoni, C. De Angelis, Opt. Lett. 33(22), 2662 (2008)

    Article  ADS  Google Scholar 

  48. C. Milián, D.V. Skryabin, Appl. Phys. Lett. 98, 111104 (2011)

    Article  ADS  Google Scholar 

  49. A. Degiron, S.Y. Cho, T. Tyler, N.M. Jokerst, D.R. Smith, New J. Phys. 11, 015002 (2009)

    Article  ADS  Google Scholar 

  50. A.R. Davoyan, I.V. Shadrivov, A.A. Zharov, D.K. Gramotnev, Y.S. Kivshar, Phys. Rev. Lett. 105(11), 116804 (2010)

    Article  ADS  Google Scholar 

  51. A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, D.K. Gramotnev, Phys. Status Solidi (RRL) 4, 277 (2010)

    Article  ADS  Google Scholar 

  52. S.I. Bozhevolnyi, K.V. Nerkararyan, Opt. Lett. 35(4), 541 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Salgueiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salgueiro, J.R., Kivshar, Y.S. (2016). Nonlinear Plasmonic Waveguides. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics