Skip to main content

Human Pluripotent Stem Cells as a Renewable Source of Natural Killer Cells

  • Chapter
  • First Online:
Hematopoietic Differentiation of Human Pluripotent Stem Cells

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM,volume 6))

Abstract

Human pluripotent stems cells provide an ideal source for the study of hematopoietic differentiation. Natural killer (NK) cells are lymphocytes that play a key role in innate immunity against viral infections as well as malignancies. The development and differentiation of NK cells have been an area of increasing research interest due to their clinical utility in treating multiple types of cancer and potentially infectious disease. Our initial studies to derive NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) used a stromal cell co-culture method with relatively poor-defined conditions. Subsequent studies have utilized a stroma-free embryoid body (EB) method to generate hemato-endothelial precursor cells followed by in vitro NK cell differentiation in defined conditions. Further expansion of these hESC- and iPSC-derived NK cells can be done through the use of interleukin (IL)-21 expressing artificial antigen-presenting cells (aAPCs). Combining these methods, we can efficiently generate enough NK cells required for clinical therapies from a small number of undifferentiated human pluripotent stem cells. These methods enable hESCs and iPSCs to be used to produce an essentially unlimited amount of homogenous NK cells that can be used as a standardized, off-the-shelf immunotherapy for the treatment of refractory cancers and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.

    Article  CAS  PubMed  Google Scholar 

  2. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.

    Article  CAS  PubMed  Google Scholar 

  3. Geller MA, Cooley S, Judson PL, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 2011;13:98–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Miller JS, Alley KA, McGlave P. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34 + 7 + NK progenitor. Blood. 1994;83:2594–601.

    CAS  PubMed  Google Scholar 

  5. Miller JS, McCullar V, Verfaillie CM. Ex vivo culture of CD34 +/Lin-/DR- cells in stroma-derived soluble factors, interleukin-3, and macrophage inflammatory protein-1alpha maintains not only myeloid but also lymphoid progenitors in a novel switch culture assay. Blood. 1998;91:4516–22.

    CAS  PubMed  Google Scholar 

  6. Silva MR, Kessler S, Ascensao JL. Hematopoietic origin of human natural killer (NK) cells: generation from immature progenitors. Pathobiology. 1993;61:247–55.

    Article  CAS  PubMed  Google Scholar 

  7. Mrózek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56 + natural killer cells from CD34 + hematopoietic progenitor cells. Blood. 1996;87:2632–40.

    PubMed  Google Scholar 

  8. Sivori S, Cantoni C, Parolini S, et al. IL-21 induces both rapid maturation of human CD34 + cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol. 2003;33:3439–47.

    Article  CAS  PubMed  Google Scholar 

  9. Perez SA, Mahaira LG, Sotiropoulou PA, et al. Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int Immunol. 2006;18:49–58.

    Article  CAS  PubMed  Google Scholar 

  10. Wilber A, Linehan JL, Tian X, et al. Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells. 2007;25:2919–27.

    Article  CAS  PubMed  Google Scholar 

  11. Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell. 2008;2:422–33.

    Article  CAS  PubMed  Google Scholar 

  12. Woll PS, Martin CH, Miller JS, Kaufman DS. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol. 2005;175:5095–103.

    Article  CAS  PubMed  Google Scholar 

  13. Ni Z, Knorr DA, Clouser CL, et al. Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms. J Virol. 2011;85:43–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Woll PS, Grzywacz B, Tian X, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 2009;113:6094–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ng ES, Davis R, Stanley EG, Elefanty AG. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc. 2008;3:768–76.

    Article  CAS  PubMed  Google Scholar 

  16. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106:1601–3.

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2001;98:10716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Oostendorp RA, Robin C, Steinhoff C, et al. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells. 2005;23:842–51.

    Article  CAS  PubMed  Google Scholar 

  19. Ledran MH, Krassowska A, Armstrong L, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.

    Article  CAS  PubMed  Google Scholar 

  20. Denman CJ, Senyukov VV, Somanchi SS, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE. 2012;7:e30264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ng ES, Davis RP, Hatzistavrou T, Stanley EG, Elefanty AG. Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Curr Protoc Stem Cell Biol Chapter. 2008;1: Unit 1D 3.

    Google Scholar 

  22. Hexum MK, Tian X, Kaufman DS. In vivo evaluation of putative hematopoietic stem cells derived from human pluripotent stem cells. Methods Mol Biol. 2011;767:433–47.

    Article  CAS  PubMed  Google Scholar 

  23. Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013;2:274–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for studies of NK cell development have come from National Institutes of Health/NHLBI, the University of Minnesota Masonic Cancer Center, the William Lawrence & Blanche Hughes Foundation, the State of Minnesota Partnership for Biotechnology and Medical Genomics, the Minnesota Ovarian Cancer Alliance, and the International Clinical Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan S. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Hermanson, D.L., Ni, Z., Kaufman, D.S. (2015). Human Pluripotent Stem Cells as a Renewable Source of Natural Killer Cells. In: Cheng, T. (eds) Hematopoietic Differentiation of Human Pluripotent Stem Cells. SpringerBriefs in Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7312-6_5

Download citation

Publish with us

Policies and ethics