Skip to main content

Derivation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells

  • Chapter
  • First Online:
Hematopoietic Differentiation of Human Pluripotent Stem Cells

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM,volume 6))

  • 1014 Accesses

Abstract

Megakaryocytes (MKs), rare hematopoietic cells in adult bone marrow, produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method for the production of functional progeny cells, such as MKs from hiPSCs, and minimizing risk and variation due to the animal-derived products in cell cultures. Here, we describe an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all the animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with FDA-approved pharmacological reagents, including romiplostim (Nplate®, a thrombopoietin analog), Oprelvekin (recombinant IL-11), and Plasbumin (human albumin). This basic and defined differentiation system provides a platform for our future effort in investigation of regulatory factors and protocol optimization toward generating large numbers of platelets ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George JN. Platelets. Lancet. 2000;355(9214):1531–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Stroncek DF, Rebulla P. Platelet transfusions. Lancet. 2007;370(9585):427–38.

    Article  PubMed  Google Scholar 

  4. Tober J, et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood. 2007;109(4):1433–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Shultz LD, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  CAS  PubMed  Google Scholar 

  6. Ramirez PA, Wagner JE, Brunstein CG. Going straight to the point: intra-BM injection of hematopoietic progenitors. Bone Marrow Transplant. 2010;45(7):1127–33.

    Article  CAS  PubMed  Google Scholar 

  7. Choi ES, et al. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 1995;85(2):402–13.

    CAS  PubMed  Google Scholar 

  8. de Sauvage FJ, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994;369(6481):533–8.

    Article  PubMed  Google Scholar 

  9. Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem. 1995;270(10):4979–82.

    Article  CAS  PubMed  Google Scholar 

  10. Bunting S, et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood. 1997;90(9):3423–9.

    CAS  PubMed  Google Scholar 

  11. Fox N, et al. Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Invest. 2002;110(3):389–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Avecilla ST, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  13. Tian X, et al. Bioluminescent imaging demonstrates that transplanted human embryonic stem cell-derived CD34(+) cells preferentially develop into endothelial cells. Stem Cells. 2009;27(11):2675–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Takayama N, Eto K. In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol. 2012;788:205–17.

    Article  CAS  PubMed  Google Scholar 

  15. Lu SJ, et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res. 2011;21(3):530–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Takayama N, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med. 2010;207(13):2817–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gaur M, et al. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost. 2006;4(2):436–42.

    Article  CAS  PubMed  Google Scholar 

  18. Pick M, et al. Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium. PLoS ONE. 2013;8(2):e55530.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ono Y, et al. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood. 2012;120(18):3812–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nakamura S, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–48.

    Article  CAS  PubMed  Google Scholar 

  21. Ng ES, et al. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3.

    Article  CAS  PubMed  Google Scholar 

  22. Chen G, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hulse WL, Gray J, Forbes RT. Evaluating the inter and intra batch variability of protein aggregation behaviour using Taylor dispersion analysis and dynamic light scattering. Int J Pharm. 2013;453(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yahata T, et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol. 2002;169(1):204–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hiramatsu H, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood. 2003;102(3):873–80.

    Article  CAS  PubMed  Google Scholar 

  26. Ye Z, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009;114(27):5473–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chou BK, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chou BK, et al. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med. 2015.

    Google Scholar 

  29. Civin CI, et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood. 1996;88(11):4102–9.

    CAS  PubMed  Google Scholar 

  30. Michelson AD. Flow cytometry: a clinical test of platelet function. Blood. 1996;87(12):4925–36.

    CAS  PubMed  Google Scholar 

  31. Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol. 1999;6(5):342–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng L, et al. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol. 2000;184(1):58–69.

    Article  CAS  PubMed  Google Scholar 

  33. Himburg HA, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2012;2(4):964–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported in part by grants from NIH (U01 HL107446 and 2R01 HL-073781) and Maryland State Stem Research Cell Fund (2012-MSCRFII-0124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zack Z. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Li, Y., Wang, Y., Cheng, L., Wang, Z.Z. (2015). Derivation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells. In: Cheng, T. (eds) Hematopoietic Differentiation of Human Pluripotent Stem Cells. SpringerBriefs in Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7312-6_3

Download citation

Publish with us

Policies and ethics