Skip to main content

Derivation of Mature Erythrocytes from Human Pluripotent Stem Cells by Coculture with Murine Fetal Stromal Cells

  • Chapter
  • First Online:
Book cover Hematopoietic Differentiation of Human Pluripotent Stem Cells

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM,volume 6))

Abstract

Transfusion of red blood cells (RBCs) is a requisite cell therapy today, while RBCs supplied by donors cannot match the huge demand of patients. Human pluripotent stem cells (hPSCs) are promising cell sources to obtain RBCs as an alternative transfusion product for clinical application. Several in vitro culture systems have been reported that in which mature erythrocytes can be efficiently generated from hPSCs. However, different efficiency and maturity of hPSC-derived erythrocytes could be obtained when using different culture systems. We still lack a complete understanding of the regulatory pathways controlling human erythrocyte development and maturation, especially the origination of erythrocytes early in the embryo and enucleation at the terminal stage of differentiation. In this chapter, we focus on an efficient method established successfully in our laboratory to derive functionally mature erythrocytes from hPSCs by coculture with mouse fetal stromal cells [aorta–gonad–mesonephros stromal cells (mAGM) and fetal liver stromal cells (mFLSCs), respectively]. The procedures to investigate the characteristics of these hPSC-derived erythrocytes are also introduced, including colony formation assay to detect the hematopoietic potential, flow cytometry assay to detect the phenotypic expression pattern, and immuno-staining assay of the Hb components to evaluate the maturity. At the end of this review, several future prospects are also be addressed in this research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Blood safety and availability. 2014.

    Google Scholar 

  2. Migliaccio AR, Whitsett C, Papayannopoulou T, Sadelain M. The potential of stem cells as an in vitro source of red blood cells for transfusion. Cell Stem Cell. 2012;10:115–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Neildez-Nguyen TM, Wajcman H, Marden MC, Bensidhoum M, Moncollin V, Giarratana MC, Kobari L, Thierry D, Douay L. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol. 2002;20:467–72.

    Article  CAS  PubMed  Google Scholar 

  4. Douay L, Giarratana MC. In vitro generation of mature and functional human red blood cells: a model with multidisciplinary perspectives. Bulletin de l’Academie nationale de medicine. 2005;189:903–13 (discussion 914-905).

    CAS  Google Scholar 

  5. Douay L, Andreu G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion? Transfus Med Rev. 2007;21:91–100.

    Article  PubMed  Google Scholar 

  6. Giarratana MC, Rouard H, Dumont A, Kiger L, Safeukui I, Le Pennec PY, Francois S, Trugnan G, Peyrard T, Marie T, Jolly S, Hebert N, Mazurier C, Mario N, Harmand L, Lapillonne H, Devaux JY, Douay L. Proof of principle for transfusion of in vitro-generated red blood cells. Blood. 2011;118:5071–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Flores-Guzman P, Fernandez-Sanchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med. 2013;2:830–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jing Q, Cai H, Du Z, Ye Z, Tan WS. Effects of agitation speed on the ex vivo expansion of cord blood hematopoietic stem/progenitor cells in stirred suspension culture. Artif Cells Nanomed Biotechnol. 2013;41:98–102.

    Article  CAS  PubMed  Google Scholar 

  9. Migliaccio AR, Whitsett C, Migliaccio G. Erythroid cells in vitro: from developmental biology to blood transfusion products. Curr Opin Hematol. 2009;16:259–68.

    Article  PubMed  Google Scholar 

  10. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  12. Migliaccio G, Di Pietro R, di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T. In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis. 2002;28:169–80.

    Article  PubMed  Google Scholar 

  13. Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells. 2008;26:1998–2005.

    Article  CAS  PubMed  Google Scholar 

  14. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 2011;29:73–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, Artandi SE, Wernig M, Joung JK. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29:1717–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng L. Human stem cell models for red blood disease modeling and treatment. In 2014 International symposium on erythrocyte biology, Zhengzhou, China. 2014.

    Google Scholar 

  18. Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, Wettstein PJ, Honig GR, Lanza R. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood. 2008;112:4475–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol. 2006;24:1255–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, Kiger L, Wattenhofer-Donze M, Puccio H, Hebert N, Francina A, Andreu G, Viville S, Douay L. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95:1651–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chang CJ, Mitra K, Koya M, Velho M, Desprat R, Lenz J, Bouhassira EE. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS ONE. 2011;6:e25761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chang KH, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB, Papayannopoulou T. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood. 2006;108:1515–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kobari L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C, Rouzbeh S, El-Nemer W, Hebert N, Giarratana MC, Francois S, Chapel A, Lapillonne H, Luton D, Bennaceur-Griscelli A, Douay L. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 2012;97:1795–803.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2001;98:10716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood. 2008;111:2400–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ma F, Wang D, Hanada S, Ebihara Y, Kawasaki H, Zaike Y, Heike T, Nakahata T, Tsuji K. Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells. Int J Hematol. 2007;85:371–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakauchi H, Tsuji K. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA. 2008;105:13087–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, Slukvin II. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20:1639–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Qiu C, Hanson E, Olivier E, Inada M, Kaufman DS, Gupta S, Bouhassira EE. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol. 2005;33:1450–8.

    Article  CAS  PubMed  Google Scholar 

  30. Peschle C, Mavilio F, Care A, Migliaccio G, Migliaccio AR, Salvo G, Samoggia P, Petti S, Guerriero R, Marinucci M, et al. Haemoglobin switching in human embryos: asynchrony of zeta—alpha and epsilon—gamma-globin switches in primitive and definite erythropoietic lineage. Nature. 1985;313:235–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lievre F, Peault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996;87:67–72.

    CAS  PubMed  Google Scholar 

  32. Xu MJ, Tsuji K, Ueda T, Mukouyama YS, Hara T, Yang FC, Ebihara Y, Matsuoka S, Manabe A, Kikuchi A, Ito M, Miyajima A, Nakahata T. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood. 1998;92:2032–40.

    CAS  PubMed  Google Scholar 

  33. Ma F, Kambe N, Wang D, Shinoda G, Fujino H, Umeda K, Fujisawa A, Ma L, Suemori H, Nakatsuji N, Miyachi Y, Torii R, Tsuji K, Heike T, Nakahata T. Direct development of functionally mature tryptase/chymase double-positive connective tissue-type mast cells from primate embryonic stem cells. Stem Cells. 2008;26:706–14.

    Article  CAS  PubMed  Google Scholar 

  34. Ma F, Nashihama YG, Yang W, Yasuhiro E, Tsuji K. Differentiation oh human embryonic and induced pluripotent stem cells into blood cells in coculture with murine stromal cells. In Jin KYAS, editor. Human embryonic and induced pluripotent stem cells: lineage-specific differentiation protocols. Clifton: Humana Press; 2011. pp. 321–335.

    Google Scholar 

  35. Keller G, Lacaud G, Robertson S. Development of the hematopoietic system in the mouse. Exp Hematol. 1999;27:777–87.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuoka S, Tsuji K, Hisakawa H, Xu M, Ebihara Y, Ishii T, Sugiyama D, Manabe A, Tanaka R, Ikeda Y, Asano S, Nakahata T. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood. 2001;98:6–12.

    Article  CAS  PubMed  Google Scholar 

  37. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291–301.

    Article  CAS  PubMed  Google Scholar 

  38. Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138:1017–31.

    Article  CAS  PubMed  Google Scholar 

  39. Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R, Yung S, Santibanez-Coref M, Dzierzak E, Stojkovic M, Oostendorp RA, Forrester L, Lako M. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.

    Article  CAS  PubMed  Google Scholar 

  40. Ma F, Wada M, Yoshino H, Ebihara Y, Ishii T, Manabe A, Tanaka R, Maekawa T, Ito M, Mugishima H, Asano S, Nakahata T, Tsuji K. Development of human lymphohematopoietic stem and progenitor cells defined by expression of CD34 and CD81. Blood. 2001;97:3755–62.

    Article  CAS  PubMed  Google Scholar 

  41. Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, Eto K, Nakauchi H. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood. 2008;111:5298–306.

    Article  CAS  PubMed  Google Scholar 

  42. Nakahata T, Spicer SS, Cantey JR, Ogawa M. Clonal assay of mouse mast cell colonies in methylcellulose culture. Blood. 1982;60:352–61.

    CAS  PubMed  Google Scholar 

  43. Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA. 1982;79:3843–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, Chasis JA, Mohandas N, An X. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013;121:e43–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Stamatoyannopoulos G. Control of globin gene expression during development and erythroid differentiation. Exp Hematol. 2005;33:259–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Slukvin II. Deciphering the hierarchy of angiohematopoietic progenitors from human pluripotent stem cells. Cell Cycle. 2013;12:720–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F, Probasco MD, Tian S, Stewart R, Thomson JA, Slukvin II. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:553–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32:554–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yoder MC. Inducing definitive hematopoiesis in a dish. Nat Biotechnol. 2014;32:539–41.

    Article  CAS  PubMed  Google Scholar 

  51. Olivier E, Qiu C, Bouhassira EE. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Transl Med. 2012;1:604–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Perugini M, Varelias A, Sadlon T, D’Andrea RJ. Hematopoietic growth factor mimetics: from concept to clinic. Cytokine Growth Factor Rev. 2009;20:87–94.

    Article  CAS  PubMed  Google Scholar 

  53. Smith BW, Rozelle SS, Leung A, Ubellacker J, Parks A, Nah SK, French D, Gadue P, Monti S, Chui DH, Steinberg MH, Frelinger AL, Michelson AD, Theberge R, McComb ME, Costello CE, Kotton DN, Mostoslavsky G, Sherr DH, Murphy GJ. The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood. 2013;122:376–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Nakamura Y, Hiroyama T, Miharada K, Kurita R. Red blood cell production from immortalized progenitor cell line. Int J Hematol. 2011;93:5–9.

    Article  PubMed  Google Scholar 

  55. Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS ONE. 2013;8:e59890.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hirose S, Takayama N, Nakamura S, Nagasawa K, Ochi K, Hirata S, Yamazaki S, Yamaguchi T, Otsu M, Sano S, Takahashi N, Sawaguchi A, Ito M, Kato T, Nakauchi H, Eto K. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells. Stem Cell Rep. 2013;1:499–508.

    Article  CAS  Google Scholar 

  57. Hiroyama T, Miharada K, Kurita R, Nakamura Y. Plasticity of cells and ex vivo production of red blood cells. Stem Cells Int. 2011;2011:195780.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118:6258–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Fujimi A, Matsunaga T, Kobune M, Kawano Y, Nagaya T, Tanaka I, Iyama S, Hayashi T, Sato T, Miyanishi K, Sagawa T, Sato Y, Takimoto R, Takayama T, Kato J, Gasa S, Sakai H, Tsuchida E, Ikebuchi K, Hamada H, Niitsu Y. Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol. 2008;87:339–50.

    Article  PubMed  Google Scholar 

  60. Xu J, Shao Z, Glass K, Bauer DE, Pinello L, Van Handel B, Hou S, Stamatoyannopoulos JA, Mikkola HK, Yuan GC, Orkin SH. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell. 2012;23:796–811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol. 2013;24:841–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Yuan Y, Tse KT, Sin FW, Xue B, Fan HH, Xie Y, Xie Y. Ex vivo amplification of human hematopoietic stem and progenitor cells in an alginate three-dimensional culture system. Int J Lab Hematol. 2011;33:516–25.

    CAS  PubMed  Google Scholar 

  63. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8:607–26.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Jiang J, Papoutsakis ET. Stem-cell niche based comparative analysis of chemical and nano-mechanical material properties impacting ex vivo expansion and differentiation of hematopoietic and mesenchymal stem cells. Adv Healthc Mater. 2013;2:25–42.

    Article  CAS  PubMed  Google Scholar 

  65. Mohandas N, An X. Malaria and human red blood cells. Med Microbiol Immunol. 2012;201:593–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Mel HC, Prenant M, Mohandas N. Reticulocyte motility and form: studies on maturation and classification. Blood. 1977;49:1001–9.

    CAS  PubMed  Google Scholar 

  67. Migliaccio G, Sanchez M, Masiello F, Tirelli V, Varricchio L, Whitsett C, Migliaccio AR. Humanized culture medium for clinical expansion of human erythroblasts. Cell Transplant. 2010;19:453–69.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hu Z, Van Rooijen N, Yang YG. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood. 2011;118:5938–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Mao, B. et al. (2015). Derivation of Mature Erythrocytes from Human Pluripotent Stem Cells by Coculture with Murine Fetal Stromal Cells. In: Cheng, T. (eds) Hematopoietic Differentiation of Human Pluripotent Stem Cells. SpringerBriefs in Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7312-6_2

Download citation

Publish with us

Policies and ethics