Skip to main content

Generation of Hemangioblasts from Human Pluripotent Stem Cells

  • Chapter
  • First Online:
  • 969 Accesses

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM,volume 6))

Abstract

Hemangioblasts are progenitors with the capacity to differentiate into hematopoietic, endothelial, smooth muscle, and mesenchymal stromal cells and represent an excellent candidate of cell therapy for a variety of human diseases. To realize their clinical potential, first, an efficient and controlled differentiation toward hemangioblasts in a scalable manner, probably in a bioreactor setting, from an unlimited source is required. These cells also need to be generated under animal components and cell-free conditions, or additional regulatory challenges, such as xeno-transplant, will have to be addressed. The ability of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSC) to divide indefinitely without losing pluripotency may allow them to serve as an inexhaustible source for the large-scale production of therapeutic cells. In this chapter, we describe a robust system that can efficiently generate large numbers of hemangioblasts from multiple hESCs and iPSC lines under well-defined conditions, which is an important step for future clinical applications, with the potential of developing a GMP-compatible scalable system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wagner RC. Endothelial cell embryology and growth. Adv Microcirc. 1980;9:45–75.

    Google Scholar 

  2. Ema M, Faloon P, Zhang WJ, et al. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev. 2003;17:380–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. DSouza SL, Elefanty AG, Keller G. SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood 2005;105:3862–3870.

    Google Scholar 

  4. Lu SJ, Ivanova Y, Feng Q, Luo C, Lanza R. Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells. Regen Med. 2009;4:37–47.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Kimbrel EA, Ijichi K, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports. 2014;3:115–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  7. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hungerford JE, Little CD. Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res. 1999;36:2–27.

    Article  CAS  PubMed  Google Scholar 

  9. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49:507–21.

    Article  CAS  PubMed  Google Scholar 

  10. Biomedicine Carmeliet P. Clotting factors build blood vessels. Science. 2001;293:1602–4.

    Article  Google Scholar 

  11. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. 1998;125:725–32.

    CAS  PubMed  Google Scholar 

  12. Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–93.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Li L, Shojaei F, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 2004;21:31–41.

    Article  CAS  PubMed  Google Scholar 

  14. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Umeda K, Heike T, Yoshimoto M, et al. Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells. 2006;24:1348–58.

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109:2679–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Lu SJ, Feng Q, Caballero S, et al. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods. 2007;4:501–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lu SJ, Luo C, Holton K, et al. Robust generation of hemangioblastic progenitors from human embryonic stem cells. Regen. Med. 2008;3:693–704.

    Article  CAS  PubMed  Google Scholar 

  19. Lu SJ, Kelley T, Feng Q, et al. 3D microcarrier system for efficient differentiation of human pluripotent stem cells into hematopoietic cells without feeders and serum [corrected]. Regen Med. 2013;8:413–24.

    Article  CAS  PubMed  Google Scholar 

  20. Oh SK, Chen AK, Mok Y, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009;2:219–30.

    Article  CAS  PubMed  Google Scholar 

  21. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Derivation of human embryonic stem cells from single blastomeres. Nat Protoc. 2007;2:1963–72.

    Article  CAS  PubMed  Google Scholar 

  22. Klimanskaya I, McMahon J. Approaches of derivation and maintenance of human ES cells: detailed procedures and alternatives. In: Lanza Rea, ed. Handbook of Stem Cells. Volume 1: Embryonic Stem Cells. New York, USA: Elsevier/Academic Press; 2004:437–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jiang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Lu, SJ., Feng, Q., Lanza, R. (2015). Generation of Hemangioblasts from Human Pluripotent Stem Cells. In: Cheng, T. (eds) Hematopoietic Differentiation of Human Pluripotent Stem Cells. SpringerBriefs in Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7312-6_1

Download citation

Publish with us

Policies and ethics