Skip to main content

Guess Your Neighbour’s Input: No Quantum Advantage but an Advantage for Quantum Theory

  • Chapter
  • First Online:
Quantum Theory: Informational Foundations and Foils

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 181))

Abstract

Quantum mechanics dramatically differs from classical physics. An interesting consequence of this fact is that quantum resources offer an advantage over classical resources in many information-theoretic tasks. In quantum information, the goal of which is to understand information processing from a quantum perspective, it is thus natural to focus on tasks where quantum resources provide an advantage over classical ones, and to overlook tasks where quantum mechanics provides no advantage. But are the latter tasks really useless from a more general perspective? In this review we focus on a simple information-theoretic game called ‘guess your neighbour’s input’, for which classical and quantum players perform equally well. Interestingly, this seemingly innocuous game turns out to be useful in various contexts. From a fundamental point of view, the game provides a sharp separation between quantum mechanics and other more general physical theories, hence bringing a deeper understanding of the foundations of quantum mechanics. The game also finds unexpected applications in quantum foundations and quantum information theory, related to Gleason’s theorem, and to bound entanglement and unextendible product bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By simplicity, we consider \(\lambda \) to be discrete, but all the formulation can be extended to the continuous case.

  2. 2.

    Note that for 2 players, no-signaling correlation provide no advantage.

  3. 3.

    To see this explicitly let us first notice that for a normalized witness W it holds that \(W=(I\otimes \varLambda )(\varPhi )\) with trace-preserving \(\varLambda \) iff \(W_A=\text{ tr }_B W=\mathbbm {1}/d\). Then, if \(W_A\ne \mathbbm {1}/d\) but it is of full rank, one introduces another witness \(\widetilde{W}=(1/d)(W_A^{-1/2}\otimes {\mathbbm {1}})W(W_A^{-1/2}\otimes \mathbbm {1})\). Clearly, \(\widetilde{W}_A=\mathbbm {1}/d\) and thus \(\widetilde{W}\) is isomorphic to a trace-preserving positive map \(\widetilde{\varLambda }\). Consequently,

    figure a

    where \(\varPsi \) denotes a projector onto some normalized pure state \(| \varPsi \rangle =\sqrt{d}(\sqrt{W_A}\otimes \mathbbm {1})| \varPhi \rangle \) of full Schmidt rank. Finally, if \(W_A\) is rank-deficient, one constructs yet another witness \(W'=W+\mathscr {P}_A^{\perp }\otimes \mathbbm {1}\), where \(\mathscr {P}_A^{\perp }=\mathbbm {1}-\mathscr {P}_A\) with \(\mathscr {P}_A\) denoting a projector onto the support of \(W_A\). Then, \(W'_A\) is of full-rank and therefore \(W'\) admits the form (29). To complete the proof, it suffices to notice that \(W=(\mathscr {P}_A\otimes \mathbbm {1})W'(\mathscr {P}_A\otimes \mathbbm {1})\), and hence W also assumes the form (29) with a normalized pure state \(| \varPsi \rangle =\sqrt{d}[\mathscr {P}_A(W_A')^{1/2}\otimes \mathbbm {1}]| \varPhi \rangle =\sqrt{d}(W_A^{1/2}\otimes \mathbbm {1})| \varPhi \rangle \) which is now not of full Schmidt rank.

  4. 4.

    The dual map \(\varLambda ^*\) of \(\varLambda \) is the map such that \(\text{ tr }(A\varLambda (B))=\text{ tr }[\varLambda ^*(A)B]\).

References

  1. L. Hardy, arXiv:quant-ph/0101012v4

  2. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  3. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. mod. Phys. 86, 419 (2014)

    Google Scholar 

  4. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Buhrman, R. Cleve, S. Massar, R. de Wolf, Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  6. J. Barrett, L. Hardy, A. Kent, Phys. Rev. Lett. 95, 010503 (2005); A. Acín, et al., Phys. Rev. Lett. 98, 230501 (2007); L. Masanes, S. Pironio, A. Acín, Nat. Commun. 2, 238 (2011)

    Google Scholar 

  7. S. Pironio, et al., Nature 464, 1021 (2010); R. Colbeck, Ph.D. thesis, University of Cambridge; R. Colbeck, A. Kent, J. Phys. A: Math. Theor. 44(9), 095305 (2011)

    Google Scholar 

  8. S. Popescu, R. Rohrlich, Found. Phys. 24, 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Brassard, Nat. Phys. 1, 2 (2005)

    Article  Google Scholar 

  10. S. Popescu, Nat. Phys. 2, 507 (2006)

    Article  Google Scholar 

  11. R. Clifton, J. Bub, H. Halvorson, Found. Phys. 33, 1561 (2003)

    Article  MathSciNet  Google Scholar 

  12. W. van Dam, Nonlocality & communication complexity. Ph.D. thesis, University of Oxford (2000), arXiv:quant-ph/0501159v1

  13. G. Brassard, H. Buhrman, N. Linden, A.A. Méthot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Brunner, P. Skrzypczyk, Phys. Rev. Lett. 102, 160403 (2009)

    Article  ADS  Google Scholar 

  15. M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Nature 461, 1101 (2009)

    Article  ADS  Google Scholar 

  16. J. Allcock, N. Brunner, M. Pawłowski, V. Scarani, Phys. Rev. A 80, 040103(R) (2009)

    Article  ADS  Google Scholar 

  17. M. Navascues, H. Wunderlich, Proc. R. Soc. Lond. A 466, 881 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Barnum, S. Beigi, S. Boixo, M.B. Elliott, S. Wehner, Phys. Rev. Lett. 104, 140401 (2010)

    Article  ADS  Google Scholar 

  19. A. Acín, R. Augusiak, D. Cavalcanti, C. Hadley, J.K. Korbicz, M. Lewenstein, M. Piani, Phys. Rev. Lett. 104, 140404 (2010)

    Article  ADS  Google Scholar 

  20. M.L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, S. Pironio, Phys. Rev. Lett. 104, 230404 (2010)

    Article  ADS  Google Scholar 

  21. A. Winter, Nature 466, 1053 (2010)

    Article  ADS  Google Scholar 

  22. R. Gallego, L. Würflinger, A. Acín, M. Navascués, Phys. Rev. Lett. 107, 210403 (2011)

    Article  ADS  Google Scholar 

  23. T.H. Yang, D. Cavalcanti, M. Almeida, C. Teo, V. Scarani, New J. Phys. 14, 013061 (2012)

    Article  Google Scholar 

  24. A. Gleason, J. Math. Mech. 6, 885 (1957)

    MathSciNet  Google Scholar 

  25. R. Augusiak, J. Stasińska, C. Hadley, J.K. Korbicz, M. Lewenstein, A. Acín, Phys. Rev. Lett. 107, 070401 (2011)

    Article  ADS  Google Scholar 

  26. R. Augusiak, T. Fritz, M. Kotowski, M. Kotowski, M. Pawłowski, M. Lewenstein, A. Acín, Phys. Rev. A 85, 042113 (2012)

    Article  ADS  Google Scholar 

  27. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts, Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  30. S. Pironio, J.-D. Bancal, V. Scarani, J. Phys. A: Math. Theor. 44, 065303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Śliwa, Phys. Lett. A 317, 165 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Busch, Phys. Rev. Lett. 91, 120403 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Foulis, C. Randall, Interpret. Found. Quantum Theory 5, 920 (1979); M. Kläy, C. Randall, D. Foulis, Int. J. Theor. Phys. 26, 199 (1987); H. Barnum, C.A. Fuchs, J.M. Renes, A. Wilce, arXiv:quant-ph/0507108

  34. N.R. Wallach, arXiv:quant-ph/0002058

  35. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996); B.M. Terhal, Phys. Lett. A 271, 319 (2000)

    Google Scholar 

  36. A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972); M.-D. Choi, Linear Algebra Appl. 10, 285 (1975)

    Google Scholar 

  37. M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 13, 103 (2006)

    Article  MathSciNet  Google Scholar 

  38. A. Ahanj, S. Kunkri, A. Rai, R. Rahaman, P.S. Joag, Phys. Rev. A 81, 032103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Cavalcanti, A. Salles, V. Scarani, Nat. Commun. 1, 136 (2010)

    Article  ADS  Google Scholar 

  40. R. Gallego, L. Würflinger, A. Acín, M. Navascués, Phys. Rev. Lett. 109, 070401 (2012)

    Google Scholar 

  41. J. Barrett, S. Pironio, J.-D. Bancal, N. Gisin, Phys. Rev. A 88, 014102 (2013)

    Google Scholar 

  42. D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Commun. Math. Phys. 238, 379 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  43. J.M. Leinaas, J. Myrheim, P.Ø. Sollid, Phys. Rev. A 81, 062330 (2010)

    Article  ADS  Google Scholar 

  44. Ł. Skowronek, J. Math. Phys. 52, 122202 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Niset, N.J. Cerf, Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  46. S.B. Bravyi, Quantum Inf. Process. 3, 309 (2004)

    Article  MathSciNet  Google Scholar 

  47. S. Pironio, J. Math. Phys. 46, 062112 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acin, Nat. Commun. 4, 2263 (2013)

    Google Scholar 

Download references

Acknowledgments

Discussions with T. Fritz are acknowledged. This work was supported by the ERC starting grant PERCENT, the EU AQUTE and QCS projects, the Spanish CHIST-ERA DIQIP, FIS2008-00784 and FIS2010-14830 projects, and the UK EPSRC. R. A. is supported by the Spanish MINCIN through the Juan de la Cierva program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Acín or Nicolas Brunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Acín, A., Almeida, M.L., Augusiak, R., Brunner, N. (2016). Guess Your Neighbour’s Input: No Quantum Advantage but an Advantage for Quantum Theory. In: Chiribella, G., Spekkens, R. (eds) Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7303-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7303-4_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7302-7

  • Online ISBN: 978-94-017-7303-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics