Skip to main content

Post-Classical Probability Theory

  • Chapter
  • First Online:
Book cover Quantum Theory: Informational Foundations and Foils

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 181))

Abstract

This chapter offers a brief introduction to what is often called the convex-operational approach to the foundations of quantum mechanics, and reviews selected results, mostly by ourselves and collaborators, obtained using that approach. Broadly speaking, the goal of research in this vein is to locate quantum mechanics (henceforth: QM) within a very much more general, but conceptually very straightforward, generalization of classical probability theory. The hope is that, by regarding QM from the outside, so to say, we shall be able to understand it more clearly. And, in fact, this proves to be the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The formalism easily accommodates contextual probability assignments, however: simply define \(\widetilde{X}\) to be the disjoint union of the test in \(\varvec{\mathcal {M}}\)—say, to be concrete, \(\widetilde{X} = \{ (x,E) | x \in E \in \varvec{\mathcal {M}}\}\). In effect, each outcome of \(\widetilde{X}\) consists of an outcome of X, plus a record of which test was used to secure it. For each test \(E \in \varvec{\mathcal {M}}\), let \(\widetilde{E} = \{ (x,E) | x \in E\}\), and let \(\widetilde{\varvec{\mathcal {M}}} = \{ \widetilde{E} | E \in \varvec{\mathcal {M}}\}\). Probability weights on \((\widetilde{X},\widetilde{\varvec{\mathcal {M}}})\) are exactly what one means by contextual probability weights on \((X,\varvec{\mathcal {M}})\). There is a natural surjection \(\widetilde{X} \rightarrow X\) that simply forgets these records; probability weights on \((X,\varvec{\mathcal {M}})\) pull back along this surjection to give us weights on \((\widetilde{X},\widetilde{\varvec{\mathcal {M}}})\).

  2. 2.

    A more detailed discussion of test spaces with topological structure can be found in [72].

  3. 3.

    That is, given any pair of distinct outcomes, there exists a state assigning them different probabilities.

  4. 4.

    An isomorphism of test spaces is a bijection from outcomes to outcomes, preserving tests in both directions.

  5. 5.

    A weaker notion would require only that \(\alpha _i(x_i) > 0 = \alpha _i(x_j)\) for each ij, so that with some nonzero probability we learn which state is actual. Notice, too, that the condition of joint sharp distinguishability is a priori much stronger than pairwise sharp distinguishability.

  6. 6.

    Many authors define ordered linear spaces without requiring that the positive cone be either closed or generating. For our purposes, the present definition is more useful.

  7. 7.

    In general, one must add the requirement that \({\varvec{E}}\)’s ordering be archimedean, meaning that if \(x, y \in {\varvec{E}}\) with \(0 \le nx \le y\) for all \(n \in {\mathbb N}\), then \(x = 0\). However, in our finite-dimensional setting, any closed cone induces an archimedean ordering.

  8. 8.

    One of many uses for the test space structure is to privilege certain classes of observables on an order-unit space having special order-theoretic properties—for example, the set of observables the outcomes of which lie on extremal rays of \({\varvec{E}}_+\) forms a test space, or those whose outcomes are atomic effects, i.e., those that lie on extremal rays of \({\varvec{E}}_+\) and are extreme points of [0, u].

  9. 9.

    This definition differs from that of [17], most obviously in that objects are associated with effect spaces, rather than state spaces, but also in taking the test space X(A) to be part of the structure of \(A \in \mathcal{C}\).

  10. 10.

    More radically, one might consider models of systems interacting in such a way that the making of a particular measurement, or the preparation of a particular state, on one component, precludes the making of certain measurements, or the preparation of certain states, on the other component. Mathematically, such situations are certainly possible.

  11. 11.

    Barrett [19] calls this the global state hypothesis; the term locally tomographic seems to have become more standard.

  12. 12.

    The converse is not quite true: an order-isomorphism \({\varvec{E}}(A) \simeq {\mathbf V}(A)\) defines a non-signaling state on \(A \otimes _{\text {max}}B\) (see  definition 14 below), but need not correspond to a state of AB.

  13. 13.

    Consider, for instance, the case of \((\text{ Farmer } \otimes \text{ Hen } ) \otimes \text{ Fox } \ \ \text{ vs. } \ \ \text{ Farmer } \otimes (\text{ Hen } \otimes \text{ Fox })\).

  14. 14.

    Duals, where they exist, are canonically isomorphic. Hence, for most purposes, the choice of one rather than another object as “the” dual is irrelevant. The existence of a degenerate compact structure is, however, a real constraint [15, 62].

  15. 15.

    One might raise the aesthetic objection that it is awkward to make special reference to the interior state. But it is difficult to see how this is any worse aesthetically than making special reference to, say, pure states.

  16. 16.

    This last has sometimes been criticized for being “too mathematical”—that is, insufficiently operational and at the same time, too technically involved. It’s worth pointing out, however, that much of it becomes significantly simpler when specialized to the finite-dimensional case.

References

  1. S. Abramsky, B. Coecke, A categorical semantics of quantum protocols, in Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) (2004), pp. 415–425

    Google Scholar 

  2. E. Alfsen, F.W. Shultz, Geometry of State Spaces of Operator Algebras (Birkhäuser, Boston, 2003)

    Google Scholar 

  3. J. Allcock, N. Brunner, M.Pawlowski, V. Scarani, Recovering part of the quantum boundary from information causality (2009). arXiv:0906.3464.v3

  4. H. Araki, On a characterization of the state space of quantum mechanics. Commun. Math. Phys. 75, 1–24 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. I. Amemiya, H. Araki, A remark on Piron’s paper. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 2, 423–429 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Baez, Quantum quandaries: a category-theoretic perspective, in The Structural Foundations of Quantum Gravity, ed. by D. Rickles, S. French, J. Saatsi (Oxford University Press, Oxford, 2006) ( arXiv:0404040.v2, 2004)

    Google Scholar 

  7. J. Baez, M. Stay, Physics, topology, logic and computation: a Rosetta stone, in New Structures for Physics. Lecture Notes in Physics, vol. 813, ed. by B. Coecke (Springer, Berlin, 2011) ( arXiv:0903.0340, 2009)

  8. H. Barnum, C. Caves, C. Fuchs, R. Josza, B. Schumacher, Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  9. H. Barnum, J. Barrett, M. Leifer, A. Wilce, Cloning and broadcasting in generic probabilistic theories (2006). arXiv:quant-ph/0611295

  10. H. Barnum, J. Barrett, M. Leifer, A. Wilce, A generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501–240504 (2007). arXiv:0707.0620

  11. H. Barnum, J. Barrett, M. Leifer, A. Wilce, Teleportation in general probabilistic theories, in Mathematical Foundations of Information Flow. AMS Proceedings of Symposia in Applied Mathematics, ed. by S. Abramsky, M. Mislove (American Mathematical Society, Providence, 2012). arXiv:0805.3553

  12. H. Barnum, J. Barrett, L. Clark, M. Leifer, R. Spekkens, N. Stepanik, A. Wilce, R. Wilke, Entropy and information causality in general probabilistic theories. New J. Phys. 12, 033024 (2010) (N.J. Addendum, Phys. 12, 129401 (2012)) ( arXiv:0909.5075)

  13. H. Barnum, O. Dahlsten, M. Leifer, B. Toner, Nonclassicality without entanglement enables bit-commitment (2008). arXiv:0803.1264

  14. H. Barnum, P. Gaebler, A. Wilce, Ensemble steering, weak self-duality, and the structure of probabilistic theories (2009). arXiv:0912.5532

  15. H. Barnum, R. Duncan, A. Wilce, Symmetry, compact closure, and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013). ( arxiv:1004.2920)

    Google Scholar 

  16. H. Barnum, C. Fuchs, J. Renes, A. Wilce, Influence-free states on compound quantum systems, arXiv:quant-ph/0507108v1 (2005)

  17. H. Barnum, A. Wilce, Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum theory (2009). arXiv:0908.2354

  18. H. Barnum, R. Duncan, A. Wilce, Symmetry, compact closure, and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013). arXiv:1004.2920

    Google Scholar 

  19. J. Barrett, Information processing in generalized probabilistic theories (2005). arXiv:quant-ph/0508211v3

  20. J. Barrett, M. Leifer, The deFinetti theorem for test spaces. New J. Phys. 11 (2009). arXiv:0712.2265

    Google Scholar 

  21. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore (1984), p. 175

    Google Scholar 

  22. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. G. Birkhoff, J. von Neumann, The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Chiribella, G.M. D’Ariano, P. Perinotti, Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010). arXiv:0908.1583

  25. G. Chiribella, G.M. D’Ariano, P. Perinotti, Information-theoretic derivation of quantum theory. Phys. Rev. A 84, 012311 (2011). arXiv:1011.6451

  26. B. Coecke, A universe of interacting processes and some of its guises, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, ed. by H. Halvorsen (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  27. D. Dieks, Communication by EPR devices. Phys. Lett. A 92, 271172 (1982)

    Google Scholar 

  28. B. Dakic, C. Brukner, Quantum theory and beyond: is entanglement special? (2009). arXiv:0911.0695

  29. L. Davies, An operational approach to quantum probability, Commun. Math. Phys. 17, 239–260 (1970)

    Google Scholar 

  30. A. Dvurecenskij, Gleason’s Theorem and Its Applications (Kluwer, Dordrecht, 1993)

    Book  MATH  Google Scholar 

  31. C.M. Edwards, The operational approach to algebraic quantum theory. Commun. Math. Phys. 16, 207–230 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. Faraut, A. Koranyi, Analysis on Symmetric Cones (Oxford University Press, Oxford, 1994)

    MATH  Google Scholar 

  33. D. Foulis, C. Randall, An approach to empirical logic. Am. Math. Mon. 77, 363–374 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Foulis, C. Randall, The empirical logic approach to the physical sciences, in Foundations of Quantum Mechanics and Ordered Linear Spaces, ed. by A. Hartkämper, H. von Neumann (Springer, Berlin, 1974)

    Google Scholar 

  35. D. Foulis, C. Randall, What are quantum logics and what ought they to be?, in Current Issues in Quantum Logic, ed. by E.G. Beltrametti, B.C. van Fraassen (Plenum, New York, 1981)

    Google Scholar 

  36. D. Foulis, C. Randall, Empirical logic and tensor products, in Interpretations and Foundations of quantum Theory, ed. by H. Neumann (B. I. Wisssenschaft, Mannheim, 1981)

    Google Scholar 

  37. P. Goyal, From information geometry to to quantum theory. New J. Phys. 12, 023012 (2010). arXiv:0805.2770

    Google Scholar 

  38. R. Greechie, Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Gunson, On the algebraic structure of quantum mechanics. Commun. Math. Phys. 6, 262–285 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. H. Hanche-Olsen, JB algebras with tensor products are \(C^{\ast }\)-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory, ed. by H. Araki et al., Lecture Notes in Mathematics, vol. 1132 (Springer, Berlin,1985)

    Google Scholar 

  41. L. Hardy, Quantum theory from five reasonable axioms (2000). arXiv:quant-ph/00101012

  42. A. Holevo, Probabilistic and Statistical Aspects of Quantum Mechanics (North-Holland, Amsterdam, 1982) (Second edition published by Edizioni della Normale, Pisa, 2011)

    Google Scholar 

  43. P. Jordan, J. von Neumann, E.P. Wigner, On an algebraic generalization of the quantum-mechanical formalism. Ann. Math. 35, 29–64 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Koecher, Die geodätischen von positivitätsbereichen. Mathematische Annalen 135, 192–202 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Kläy, Einstein-Podolsky-Rosen experiments: the structure of the sample space I, II. Found. Phys. Lett. 1, 205–244 (1988)

    Article  MathSciNet  Google Scholar 

  46. M. Kläy, C.H. Randall, D.J. Foulis, Tensor products and probability weights. Int. J. Theor. Phys. 26, 199–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Lindblad, A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Ludwig, Foundations of Quantum Mechanics (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  49. G. Mackey, Mathematical Foundations of Quantum Mechanics (Addison Wesley, 1963)

    Google Scholar 

  50. L. Masanes, M. Müller, A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011). arXiv:1004.1483

    Google Scholar 

  51. B. Mielnik, Geometry of quantum states. Commun. Math. Phys. 9, 55–80 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. M. Mueller, C. Ududec, The computational power of quantum mechanics determines its self-duality (2011). arXiv:1110.3516

  53. G. de la Torre, Ll. Masanes, A. Short, M. Mueller, Deriving quantum theory from its local structure and reversibility (2011). arXiv:1110:5482

  54. I. Namioka, R. Phelps, Tensor products of compact convex sets. Pac. J. Math. 31, 469–480 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Information causality as a physical principle. Nature 461, 1101 (2009)

    Article  ADS  Google Scholar 

  56. C. Piron, Foundations of Quantum Physics (W.A. Benjamin, Reading, 1976)

    Book  MATH  Google Scholar 

  57. J. Rau, On quantum versus classical probability. Ann. Phys. 324, 2622–2637 (2009). arXiv:0710.2119

  58. I. Satake, Algebraic Structures of Symmetric Domains (Publications of the Mathematical Society of Japan, no. 14) (Princeton University Press, Iwanami Shoten, 1980)

    Google Scholar 

  59. F. Shultz, A characterization of state spaces of orthomodular lattices. J. Comb. Theory 17, 317–328 (1974)

    Article  MathSciNet  Google Scholar 

  60. E. Schrödinger, Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446–452 (1936)

    Article  ADS  MATH  Google Scholar 

  61. P. Selinger, Towards a semantics for higher-order quantum computation, in Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland. Turku Center for Computer Science, Publication No. 33 (2004), pp. 127–143

    Google Scholar 

  62. P. Selinger, Autonomous categories in which \(A\) is isomorphic to \(A^{*}\) extended abstract, in Proceedings of the 7th International Workshop on Quantum Physics and Logic (QPL 2010) (Oxford, 2010), pp. 151–160

    Google Scholar 

  63. P. Selinger, Finite dimensional Hilbert spaces are complete for dagger-compact categories (extended abstract), in Proceedings of the 5th International Workshop on Quantum Physics and Logic (QPL 2008), Reykjavik, ENTCS, vol. 270, pp. 113–119 (2011)

    Google Scholar 

  64. A. Short, S. Wehner, Entropy in general physical theories. New J. Phys. 12, 033023 (2010). arXiv:0909.4801

    Google Scholar 

  65. M.P. Soler, A characterization of Hilbert spaces by orthomoular spaces. Commun. Algebra 23, 219–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. B. Tsirel’son, Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  67. A. Uhlmann, On the Shannon entropy and related functionals on convex sets. Lett. Math. Phys. 4, 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  68. W. van Dam, Implausible consequences of superstrong nonlocality. Nat. Comput. 12, 9–12 (2013). arXiv:quant-ph/0501159

  69. E.B. Vinberg, Homogeneous cones, Dokl. Acad. Nauk. SSSR 141, 270–273 (1960). English translation: Soviet Math. Dokl. 2, 1416–1619 (1961)

    Google Scholar 

  70. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)

    MATH  Google Scholar 

  71. A. Wilce, The tensor product in generalized measure theory. Int. J. Theor. Phys. 31, 1915–1928 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Wilce, Topological test spaces. Int. J. Theor. Phys. 44, 1227–1238 (2005). arXiv:quant-ph/0405178

    Google Scholar 

  73. A. Wilce, Symmetry and topology in quantum logic. Int. J. Theor. Phys. 44, 2303–2316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Wilce, Four and a half axioms for finite-dimensional quantum theory, in Probability in Physics: Essays in Honor of Itamar Pitowsky, ed. by Y. Ben-Menahem, M. Hemmo (2012) ( arXiv:0912.5530, 2009)

  75. A. Wilce, Formalism and interpretation in quantum theory. Found. Phys. 40, 434–462 (2010). http://philsci-archive.pitt.edu/3794/1/bub6d-post.pdf

    Google Scholar 

  76. A. Wilce, Symmetry, self-duality, and the Jordan structure of quantum theory (2011). arXiv:1110.6607

  77. G. Wittstock, Ordered normed tensor products, in Foundations of Quantum Mechanics and Ordered Linear Spaces. Springer Lecture Notes in Physics, vol. 29, ed. by A. Härtkamper, H. Neumann (Springer, Berlin, 1974)

    Google Scholar 

  78. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  79. R. Wright, Spin manuals: empirical logic talks quantum mechanics, in Mathematical Foundations of Quantum Theory, ed. by A.R. Marlowe (Academic Press, New York, 1977)

    Google Scholar 

  80. N. Zierler, Axioms for non-relativistic quantum mechanics. Pac. J. Math. 11, 1151–1169 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Barnum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barnum, H., Wilce, A. (2016). Post-Classical Probability Theory. In: Chiribella, G., Spekkens, R. (eds) Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7303-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7303-4_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7302-7

  • Online ISBN: 978-94-017-7303-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics