The Mechanics of Ribbons and Möbius Bands pp 251-261 | Cite as
Non-Euclidean Ribbons
- 688 Downloads
Abstract
The classical theory of ribbons as developed by Sadowsky and Wunderlich has received much attention in recent years. It concerns the equilibrium conformations of thin and narrow ribbons whose intrinsic structure favors a rectangular and flat state. However, the intrinsic structure of naturally formed ribbons will often be more complicated; Spatial variations in the in-plane distance metric can give rise to both geodesic curvature and Gaussian curvature, curving the ribbon in and out of its plane. Moreover, metric variation across the thickness of the ribbon may result in nontrivial reference normal curvatures. The resulting geometric structure is likely to have no zero-energy (stress-free) realizations in Euclidean space.
This paper presents a generalization of the Sadowsky functional, which measures the bending energy of narrow ribbons, for the case of incompatible ribbons (having no stress-free configuration). Specific solutions to special cases where the reference normal curvatures vanish, and for a naturally curved developable ribbon are presented and the resulting twist-stretch relations are discussed.
Keywords
Non-Euclidean plates Residual stress Ribbons SadowskyMathematics Subject Classification (2010)
74K20 74K25 53A05Preview
Unable to display preview. Download preview PDF.
References
- 1.Dias, M.A., Audoly, B.: arXiv preprint (2014). arXiv:1403.2094. doi: 10.1007/s10659-014-9487-0 Google Scholar
- 2.Starostin, E.L., Van der Heijden, G.H.M.: Nat. Mater. 6(8), 563 (2007) CrossRefGoogle Scholar
- 3.Efrati, E., Sharon, E., Kupferman, R.: Phys. Rev. E 83(4), 046602 (2011) CrossRefGoogle Scholar
- 4.Wunderlich, W.: Monatshefte Math. 66(3), 276 (1962) MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Efrati, E., Sharon, E., Kupferman, R.: J. Mech. Phys. Solids 57(4), 762 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Armon, S., Aharoni, H., Moshe, M., Sharon, E.: Soft Matter 10(16), 2733 (2014) CrossRefGoogle Scholar
- 7.Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Science 333(6050), 1726 (2011) CrossRefGoogle Scholar
- 8.Chopin, J., Kudrolli, A.: Phys. Rev. Lett. 111(17), 174302 (2013) CrossRefGoogle Scholar
- 9.Efrati, E., Sharon, E., Kupferman, R.: Soft Matter 9(34)(8187), 00002 (2013) Google Scholar
- 10.Ciarlet, P.G.: An Introduction to Differential Geometry with Applications to Elasticity, 2005th edn. Springer, Berlin (2006) Google Scholar
- 11.Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Dover, New York (1988) zbMATHGoogle Scholar
- 12.Lewicka, M., Reza Pakzad, M.: ESAIM Control Optim. Calc. Var. 17(4), 1158 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Willmore, T.J.: An Introduction to Differential Geometry, 1st edn. Clarendon, Oxford (1959) zbMATHGoogle Scholar
- 14.Sadowsky, M.: Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 22, 412–415 (1930) Google Scholar
- 15.Chopin, J., Démery, V., Davidovitch, B.: J. Elast., 1–53 (2014). doi: 10.1007/s10659-014-9498-x Google Scholar
- 16.Gore, J., Bryant, Z., Nöllmann, M., Le, M.U., Cozzarelli, N.R., Bustamante, C.: Nature 442(7104), 836 (2006) CrossRefGoogle Scholar
- 17.Ðuričković, B., Goriely, A., Maddocks, J.H.: Phys. Rev. Lett. 111, 108103 (2013) CrossRefGoogle Scholar
- 18.Efrati, E., Sharon, E., Kupferman, R.: Phys. Rev. E 80(1), 016602 (2009) MathSciNetCrossRefGoogle Scholar
- 19.Plewa, J.S., Witten, T.A.: J. Chem. Phys. 112(22), 10042 (2000) CrossRefGoogle Scholar
- 20.Kamien, R.D., Lubensky, T.C., Nelson, P., O’Hern, C.S.: Europhys. Lett. 38(3), 237 (1997) MathSciNetCrossRefGoogle Scholar
- 21.Moakher, M., Maddocks, J.H.: Arch. Ration. Mech. Anal. 177(1), 53 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Bets, K.V., Yakobson, B.I.: Nano Res. 2(2), 161 (2009) CrossRefGoogle Scholar
- 23.Thomas, B.N., Lindemann, C.M., Corcoran, R.C., Cotant, C.L., Kirsch, J.E., Persichini, P.J.: J. Am. Chem. Soc. 124(7), 1227 (2002) CrossRefGoogle Scholar
- 24.Chung, D.S., Benedek, G.B., Konikoff, F.M., Donovan, J.M.: Proc. Natl. Acad. Sci. USA 90(23), 11341 (1993) CrossRefGoogle Scholar