Kinematical Aspects of Levi-Civita Transport of Vectors and Tensors Along a Surface Curve

  • James CaseyEmail author


The concept of parallelism along a surface curve, which was introduced by Levi-Civita in the context of n-dimensional Riemannian manifolds, is re-examined from a kinematical viewpoint. A special type of frame, whose angular velocity is determined by the rate at which the tangent plane turns as one moves along a surface curve, is defined and is called a Levi-Civita frame. The surface may be orientable or not. Vectors and tensors fixed on Levi-Civita frames are parallel transported. Covariant differentiation of vectors and tensors along a surface curve can be expressed in terms of the corresponding corotational rates measured on Levi-Civita frames. Relevant results on ruled surfaces are also included.


Levi-Civita parallelism Parallel transport Differential geometry of surfaces Adapted frames Covariant differentiation Ruled surfaces Developable surfaces Möbius band 

Mathematics Subject Classification

53A05 53A17 53A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Truesdell, C.: The mechanical foundations of elasticity and continuum mechanics. J. Ration. Mech. Anal. 1, 125–300 (1952) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Michal, A.D.: Matrix and Tensor Calculus with Applications to Mechanics, Elasticity, and Aeronautics. Wiley, New York (1947) Google Scholar
  3. 3.
    Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, Oxford (1954) zbMATHGoogle Scholar
  4. 4.
    Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, C. (ed.) Handbuch der Physik, vol. III, pp. 226–858. Springer, Berlin (1960) Google Scholar
  5. 5.
    Fosdick, R.L.: Remarks on compatibility. In: Eskinazi, S. (ed.) Modern Developments in the Mechanics of Continua, pp. 109–127. Academic Press, New York (1966) Google Scholar
  6. 6.
    Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Englewood Cliffs, New Jersey (1983). Reprinted in Dover, New York (1994) zbMATHGoogle Scholar
  7. 7.
    Hughes, T.J.R., Marsden, J.E.: Some applications of geometry in continuum mechanics. Rep. Math. Phys. 12, 35–44 (1977) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Stumpf, H., Hoppe, U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z. Angew. Math. Mech. 5, 327–339 (1997) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Casey, J., Papadopoulos, P.: Material transport of sets and fields. Math. Mech. Solids 7, 647–676 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Heath, S.T.L. (ed.): The Thirteen Books of Euclid’s Elements, 3 Vols., 2nd edn. Cambridge University Press, Cambridge (1926). Reprinted in Dover, New York (1956) Google Scholar
  11. 11.
    Gauss, K.F.: General Investigations of Curved Surfaces of 1827 and 1825. Princeton University Press, Princeton (1902). Translated by: Morehead, J.C., Hiltebeitel, A.M. (See also General Investigations of Curved Surfaces. Raven Press, Hewlett (1965). Translated by: Hiltebeitel, A.M., Morehead, J.C.) zbMATHGoogle Scholar
  12. 12.
    Chern, S.-S.: From triangles to manifolds. Am. Math. Mon. 86, 339–349 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 5 Vols., 3rd edn. Publish or Perish, Houston (2005) Google Scholar
  14. 14.
    Pesic, P.: Beyond Geometry: Classic Papers from Riemann to Einstein. Dover, New York (2007) Google Scholar
  15. 15.
    Weatherburn, C.E.: The development of multidimensional differential geometry. In: Report of 21st Meeting of Australian and New Zealand Association for the Advancement of Science, Sydney 1932, pp. 12–28. A.J. Kent, Government Printer, Sydney (1933) Google Scholar
  16. 16.
    Weatherburn, C.E.: An Introduction to Riemannian Geometry and the Tensor Calculus. Cambridge University Press, Cambridge (1938) zbMATHGoogle Scholar
  17. 17.
    Ricci, G., Levi-Civita, T.: Méthodes de calcul differential absolu et leurs applications. Math. Ann. 54, 125–201 (1900). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 1, pp. 479–559. Nicola Zanichelli Editore, Bologna (1954) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Levi-Civita, T.: The Absolute Differential Calculus. Blackie & Son, London (1926). Reprinted in Dover, New York (1977) Google Scholar
  19. 19.
    Levi-Civita, T.: Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvature Riemanniana. Rend. Circ. Mat. Palermo 42, 173–205 (1917). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 4, pp. 1–39. Nicola Zanichelli Editore, Bologna (1960) CrossRefGoogle Scholar
  20. 20.
    Levi-Civita, T.: Parallelismo e curvature in una varietà qualunque. Questioni di Meccanica classica e relativista pp. 95–143. Zanichelli, Bologna (1924). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 6, pp. 169–197. Nicola Zanichelli Editore, Bologna (1960) Google Scholar
  21. 21.
    Graustein, W.C.: Differential Geometry. Macmillan Co., New York (1935). Reprinted in Dover, New York (1966) and (2006) Google Scholar
  22. 22.
    Casey, J.: Exploring Curvature. Vieweg, Wiesbaden (1996) CrossRefzbMATHGoogle Scholar
  23. 23.
    O’Neill, B.: Elementary Differential Geometry, 2nd edn. Academic Press, San Diego (1997) zbMATHGoogle Scholar
  24. 24.
    Weeks, J.R.: The Shape of Space. Dekker, New York (1985) zbMATHGoogle Scholar
  25. 25.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976) zbMATHGoogle Scholar
  26. 26.
    Henderson, D.W.: Differential Geometry: A Geometric Introduction. Prentice Hall, New York (1998) zbMATHGoogle Scholar
  27. 27.
    Kreyszig, E.: Differential Geometry. University of Toronto Press, Toronto (1959). Reprinted in Dover, New York (1991) zbMATHGoogle Scholar
  28. 28.
    Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Addison-Wesley, Reading (1961). Reprinted in Dover, New York (1988) zbMATHGoogle Scholar
  29. 29.
    Weatherburn, C.E.: Differential Geometry of Three Dimensions, vol. II. Cambridge University Press, Cambridge (1930) Google Scholar
  30. 30.
    Stoker, J.J.: Differential Geometry. Wiley, New York (1969) zbMATHGoogle Scholar
  31. 31.
    Naghdi, P.M.: Geometry of a surface and related results. In: Truesdell, C. (ed.) The Theory of Shells and Plates. Handbuch der Physik, vol. VIa/2, pp. 615–633. Springer, Berlin (1972). Appendix Google Scholar
  32. 32.
    Willmore, T.J.: An Introduction to Differential Geometry. Clarendon Press, Oxford (1959) zbMATHGoogle Scholar
  33. 33.
    Willmore, T.J.: Riemannian Geometry. Clarendon Press, Oxford (1993) zbMATHGoogle Scholar
  34. 34.
    Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, 2nd edn. Wiley, New York (1964) zbMATHGoogle Scholar
  35. 35.
    Schutz, B.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge (1980) CrossRefzbMATHGoogle Scholar
  36. 36.
    Chadwick, P.: Continuum Mechanics. Allen & Unwin, London (1976). Reprinted in Dover, New York (1999) Google Scholar
  37. 37.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) CrossRefGoogle Scholar
  38. 38.
    Casey, J.: Areal velocity and angular momentum for non-planar problems in particle mechanics. Am. J. Phys. 75, 677–685 (2007) CrossRefGoogle Scholar
  39. 39.
    Casey, J.: A remark on the definition of angular velocity. Z. Angew. Math. Mech. 89, 922–930 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Casey, J., Lam, V.C.: On the relative angular velocity tensor. J. Mech. Transm. Autom. Des. 108, 399–400 (1986) CrossRefGoogle Scholar
  41. 41.
    Beetle, R.D.: A formula in the theory of surfaces. Ann. Math. 15, 179–183 (1913–1914) Google Scholar
  42. 42.
    Synge, J.L., Griffith, B.A.: Principles of Mechanics, 3rd edn. McGraw-Hill, New York (1959) Google Scholar
  43. 43.
    Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970) Google Scholar
  44. 44.
    Hart, J.B., Miller, R.E., Mills, R.L.: A simple geometric model for visualizing the motion of a Foucault pendulum. Am. J. Phys. 55, 67–70 (1987) CrossRefGoogle Scholar
  45. 45.
    Berry, M.: Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations