Skip to main content

Kinematical Aspects of Levi-Civita Transport of Vectors and Tensors Along a Surface Curve

  • Chapter
The Mechanics of Ribbons and Möbius Bands

Abstract

The concept of parallelism along a surface curve, which was introduced by Levi-Civita in the context of n-dimensional Riemannian manifolds, is re-examined from a kinematical viewpoint. A special type of frame, whose angular velocity is determined by the rate at which the tangent plane turns as one moves along a surface curve, is defined and is called a Levi-Civita frame. The surface may be orientable or not. Vectors and tensors fixed on Levi-Civita frames are parallel transported. Covariant differentiation of vectors and tensors along a surface curve can be expressed in terms of the corresponding corotational rates measured on Levi-Civita frames. Relevant results on ruled surfaces are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truesdell, C.: The mechanical foundations of elasticity and continuum mechanics. J. Ration. Mech. Anal. 1, 125–300 (1952)

    MathSciNet  MATH  Google Scholar 

  2. Michal, A.D.: Matrix and Tensor Calculus with Applications to Mechanics, Elasticity, and Aeronautics. Wiley, New York (1947)

    Google Scholar 

  3. Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, Oxford (1954)

    MATH  Google Scholar 

  4. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, C. (ed.) Handbuch der Physik, vol. III, pp. 226–858. Springer, Berlin (1960)

    Google Scholar 

  5. Fosdick, R.L.: Remarks on compatibility. In: Eskinazi, S. (ed.) Modern Developments in the Mechanics of Continua, pp. 109–127. Academic Press, New York (1966)

    Google Scholar 

  6. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Englewood Cliffs, New Jersey (1983). Reprinted in Dover, New York (1994)

    MATH  Google Scholar 

  7. Hughes, T.J.R., Marsden, J.E.: Some applications of geometry in continuum mechanics. Rep. Math. Phys. 12, 35–44 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stumpf, H., Hoppe, U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z. Angew. Math. Mech. 5, 327–339 (1997)

    Article  MathSciNet  Google Scholar 

  9. Casey, J., Papadopoulos, P.: Material transport of sets and fields. Math. Mech. Solids 7, 647–676 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath, S.T.L. (ed.): The Thirteen Books of Euclid’s Elements, 3 Vols., 2nd edn. Cambridge University Press, Cambridge (1926). Reprinted in Dover, New York (1956)

    Google Scholar 

  11. Gauss, K.F.: General Investigations of Curved Surfaces of 1827 and 1825. Princeton University Press, Princeton (1902). Translated by: Morehead, J.C., Hiltebeitel, A.M. (See also General Investigations of Curved Surfaces. Raven Press, Hewlett (1965). Translated by: Hiltebeitel, A.M., Morehead, J.C.)

    MATH  Google Scholar 

  12. Chern, S.-S.: From triangles to manifolds. Am. Math. Mon. 86, 339–349 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Spivak, M.: A Comprehensive Introduction to Differential Geometry, 5 Vols., 3rd edn. Publish or Perish, Houston (2005)

    Google Scholar 

  14. Pesic, P.: Beyond Geometry: Classic Papers from Riemann to Einstein. Dover, New York (2007)

    Google Scholar 

  15. Weatherburn, C.E.: The development of multidimensional differential geometry. In: Report of 21st Meeting of Australian and New Zealand Association for the Advancement of Science, Sydney 1932, pp. 12–28. A.J. Kent, Government Printer, Sydney (1933)

    Google Scholar 

  16. Weatherburn, C.E.: An Introduction to Riemannian Geometry and the Tensor Calculus. Cambridge University Press, Cambridge (1938)

    MATH  Google Scholar 

  17. Ricci, G., Levi-Civita, T.: Méthodes de calcul differential absolu et leurs applications. Math. Ann. 54, 125–201 (1900). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 1, pp. 479–559. Nicola Zanichelli Editore, Bologna (1954)

    Article  MathSciNet  Google Scholar 

  18. Levi-Civita, T.: The Absolute Differential Calculus. Blackie & Son, London (1926). Reprinted in Dover, New York (1977)

    Google Scholar 

  19. Levi-Civita, T.: Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvature Riemanniana. Rend. Circ. Mat. Palermo 42, 173–205 (1917). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 4, pp. 1–39. Nicola Zanichelli Editore, Bologna (1960)

    Article  Google Scholar 

  20. Levi-Civita, T.: Parallelismo e curvature in una varietà qualunque. Questioni di Meccanica classica e relativista pp. 95–143. Zanichelli, Bologna (1924). Reprinted in Levi-Civita, T.: Opere Matematiche, vol. 6, pp. 169–197. Nicola Zanichelli Editore, Bologna (1960)

    Google Scholar 

  21. Graustein, W.C.: Differential Geometry. Macmillan Co., New York (1935). Reprinted in Dover, New York (1966) and (2006)

    Google Scholar 

  22. Casey, J.: Exploring Curvature. Vieweg, Wiesbaden (1996)

    Book  MATH  Google Scholar 

  23. O’Neill, B.: Elementary Differential Geometry, 2nd edn. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  24. Weeks, J.R.: The Shape of Space. Dekker, New York (1985)

    MATH  Google Scholar 

  25. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976)

    MATH  Google Scholar 

  26. Henderson, D.W.: Differential Geometry: A Geometric Introduction. Prentice Hall, New York (1998)

    MATH  Google Scholar 

  27. Kreyszig, E.: Differential Geometry. University of Toronto Press, Toronto (1959). Reprinted in Dover, New York (1991)

    MATH  Google Scholar 

  28. Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Addison-Wesley, Reading (1961). Reprinted in Dover, New York (1988)

    MATH  Google Scholar 

  29. Weatherburn, C.E.: Differential Geometry of Three Dimensions, vol. II. Cambridge University Press, Cambridge (1930)

    Google Scholar 

  30. Stoker, J.J.: Differential Geometry. Wiley, New York (1969)

    MATH  Google Scholar 

  31. Naghdi, P.M.: Geometry of a surface and related results. In: Truesdell, C. (ed.) The Theory of Shells and Plates. Handbuch der Physik, vol. VIa/2, pp. 615–633. Springer, Berlin (1972). Appendix

    Google Scholar 

  32. Willmore, T.J.: An Introduction to Differential Geometry. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  33. Willmore, T.J.: Riemannian Geometry. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  34. Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, 2nd edn. Wiley, New York (1964)

    MATH  Google Scholar 

  35. Schutz, B.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  36. Chadwick, P.: Continuum Mechanics. Allen & Unwin, London (1976). Reprinted in Dover, New York (1999)

    Google Scholar 

  37. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  38. Casey, J.: Areal velocity and angular momentum for non-planar problems in particle mechanics. Am. J. Phys. 75, 677–685 (2007)

    Article  Google Scholar 

  39. Casey, J.: A remark on the definition of angular velocity. Z. Angew. Math. Mech. 89, 922–930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Casey, J., Lam, V.C.: On the relative angular velocity tensor. J. Mech. Transm. Autom. Des. 108, 399–400 (1986)

    Article  Google Scholar 

  41. Beetle, R.D.: A formula in the theory of surfaces. Ann. Math. 15, 179–183 (1913–1914)

    Google Scholar 

  42. Synge, J.L., Griffith, B.A.: Principles of Mechanics, 3rd edn. McGraw-Hill, New York (1959)

    Google Scholar 

  43. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)

    Google Scholar 

  44. Hart, J.B., Miller, R.E., Mills, R.L.: A simple geometric model for visualizing the motion of a Foucault pendulum. Am. J. Phys. 55, 67–70 (1987)

    Article  Google Scholar 

  45. Berry, M.: Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casey, J. (2016). Kinematical Aspects of Levi-Civita Transport of Vectors and Tensors Along a Surface Curve. In: Fosdick, R., Fried, E. (eds) The Mechanics of Ribbons and Möbius Bands. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7300-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7300-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7299-0

  • Online ISBN: 978-94-017-7300-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics