The Mechanics of Ribbons and Möbius Bands pp 191-211 | Cite as
The Shrinking Figure Eight and Other Solitons for the Curve Diffusion Flow
Chapter
- 685 Downloads
Abstract
In this article we investigate the dynamics of special solutions to the surface diffusion flow of idealised ribbons. This reduces to studying the curve diffusion flow for the profile curve of the ribbon. We provide: (1) a complete classification of stationary solutions; (2) qualitative results on shrinkers, translators, and rotators; and (3) an explicit parametrisation of a shrinking figure eight curve.
Keywords
Curvature flow Curve diffusion Self-similar solutionMathematics Subject Classification (2010)
35J35 35K30 53C44 58J35Preview
Unable to display preview. Download preview PDF.
References
- 1.Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom. 23(2), 175–196 (1986) MathSciNetGoogle Scholar
- 2.Altschuler, A.: Singularities for the curve shrinking flow for space curves. J. Differ. Geom. 34(2), 491–514 (1991) MathSciNetzbMATHGoogle Scholar
- 3.Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \(\mathbb {R}^{n}\): Existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Escher, J., Ito, K.: Some dynamic properties of volume preserving curvature driven flows. Math. Ann. 333(1), 213–230 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Escher, J., Maier-Paape, S.: Losing a graph with surface diffusion. Hokkaido Math. J. 30, 297–305 (2001) MathSciNetCrossRefGoogle Scholar
- 8.Escher, J., Mayer, U., Simonett, G.: On the surface diffusion flow. In: Navier-Stokes Equations and Related Nonlinear Problems (Palanga, 1997). VSP, Utrecht (1998) Google Scholar
- 9.Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986) MathSciNetzbMATHGoogle Scholar
- 10.Ghys, E., Tabachnikov, S., Timorin, V.: Osculating curves: Around the Tait-Kneser theorem. Math. Intell. 35(1), 61–66 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Giga, Y., Ito, K.: On pinching of curves moved by surface diffusion. Commun. Appl. Anal. 2(3), 393–406 (1998) MathSciNetzbMATHGoogle Scholar
- 12.Giga, Y., Ito, K.: Loss of convexity of simple closed curves moved by surface diffusion. In: Escher, J., Simonett, G. (eds.) Topics in Nonlinear Analysis, the Herbert Amann Anniversary Volume. Progress in nonlinear differential equations and their applications, vol. 35. Birkhäuser, Basel (1999) Google Scholar
- 13.Halldorsson, H.: Self-similar solutions to the curve shortening flow. Trans. Am. Math. Soc. 364, 5285–5309 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990) MathSciNetzbMATHGoogle Scholar
- 15.McCoy, J.: The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003) MathSciNetzbMATHGoogle Scholar
- 16.McCoy, J.: Self-similar solutions of fully nonlinear curvature flows. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 317–333 (2011) MathSciNetzbMATHGoogle Scholar
- 17.McCoy, J., Wheeler, G.: A classification theorem for Helfrich surfaces. Math. Ann. 357, 1485–1508 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
- 18.McCoy, J., Wheeler, G., Williams, G.: Lifespan theorem for constrained surface diffusion flows. Math. Z. 269(1–2), 147–178 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) CrossRefGoogle Scholar
- 20.Novick-Cohen, A.: The Cahn-Hilliard equation. In: Handbook of Differential Equations: Evolutionary Equations, vol. 4, pp. 201–228 (2008) Google Scholar
- 21.Polden, A.: Curves and surfaces of least total curvature and fourth-order flows. Ph.D. Thesis (1996) Google Scholar
- 22.Sharon, E., Efrati, E.: The mechanics of non-Euclidean plates. Soft Matter 6, 5693–5704 (2010) CrossRefGoogle Scholar
- 23.Wheeler, G.: Lifespan theorem for simple constrained surface diffusion flows. J. Math. Anal. Appl. 375(2), 685–698 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Wheeler, G.: Surface diffusion flow near spheres. Calc. Var. Partial Differ. Equ. 44(1–2), 131–151 (2012) CrossRefzbMATHGoogle Scholar
- 25.Wheeler, G.: On the curve diffusion flow of closed plane curves. Ann. Mat. 192, 931–950 (2013) CrossRefzbMATHGoogle Scholar
- 26.Willmore, T.: Riemannian Geometry, vol. 33. Clarendon Press, Oxford (1993) zbMATHGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2016