The Mechanics of Ribbons and Möbius Bands pp 137-189 | Cite as
Roadmap to the Morphological Instabilities of a Stretched Twisted Ribbon
- 701 Downloads
Abstract
We address the mechanics of an elastic ribbon subjected to twist and tensile load. Motivated by the classical work of Green (Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 154(882):430, 1936; 161(905):197, 1937) and a recent experiment (Chopin and Kudrolli in Phys. Rev. Lett. 111(17):174302, 2013) that discovered a plethora of morphological instabilities, we introduce a comprehensive theoretical framework through which we construct a 4D phase diagram of this basic system, spanned by the exerted twist and tension, as well as the thickness and length of the ribbon. Different types of instabilities appear in various “corners” of this 4D parameter space, and are addressed through distinct types of asymptotic methods. Our theory employs three instruments, whose concerted implementation is necessary to provide an exhaustive study of the various parameter regimes: (i) a covariant form of the Föppl–von Kármán (cFvK) equations to the helicoidal state—necessary to account for the large deflection of the highly-symmetric helicoidal shape from planarity, and the buckling instability of the ribbon in the transverse direction; (ii) a far from threshold (FT) analysis—which describes a state in which a longitudinally-wrinkled zone expands throughout the ribbon and allows it to retain a helicoidal shape with negligible compression; (iii) finally, we introduce an asymptotic isometry equation that characterizes the energetic competition between various types of states through which a twisted ribbon becomes strainless in the singular limit of zero thickness and no tension.
Keywords
Buckling and wrinkling Far from threshold Isometry Helicoid- ssFvK equations
“small-slope” (standard) Föppl–von Kármán equations
- cFvK equations
covariant Föppl–von Kármán equations
- t, W, L
thickness, width and length of the ribbon (non-italicized quantities are dimensional)
- \(t\), \(W=1\), \(L\)
thickness, width and length normalized by the width
- \(\nu\)
Poisson ratio
- \(\mathrm{E}, \mathrm {Y},\mathrm {B}=\frac{\mathrm {Y}\mathrm {t}^{2}}{12(1-\nu^{2})}\)
Young, stretching and bending modulus
- \(Y=1\), \(B=\frac{t^{2}}{12(1-\nu^{2})}\)
stretching and bending modulus, normalized by the stretching modulus
- \(T=\mathrm {T}/\mathrm {Y}\)
tensile strain (tensile load normalized by stretching modulus)
- \(\theta\), \(\eta=\theta/L\)
twist angle and normalized twist
- \((\hat{\boldsymbol {x}},\hat{\boldsymbol {y}},\hat{\boldsymbol {z}})\)
Cartesian basis
- \(s\), \(r\)
material coordinates (longitudinal and transverse)
- \(z(s,r)\)
out of plane displacement (of the helicoid) in the small-slope approximation
- \(\boldsymbol {X}(s,r)\)
surface vector
- \(\hat{\boldsymbol {n}}\)
unit normal to the surface
- \(\sigma^{\alpha \beta}\)
stress tensor
- \(\varepsilon_{\alpha \beta}\)
strain tensor
- \(g_{\alpha \beta}\)
metric tensor
- \(c_{\alpha \beta}\)
curvature tensor
- \(\mathcal{A}^{\alpha\beta\gamma\delta}\)
elastic tensor
- \(\partial_{\alpha}\), \(D_{\alpha}\)
partial and covariant derivatives
- \(H\), \(K\)
mean and Gaussian curvatures
- \(\zeta\)
infinitesimal amplitude of the perturbation in linear stability analysis
- \(z_{1}(s,r)\)
normal component of an infinitesimal perturbation to the helicoidal shape
- \(\eta_{\mathrm{lon}}\), \(\lambda_{\mathrm{lon}}\)
longitudinal instability threshold and wavelength
- \(\eta_{\mathrm{tr}}\), \(\lambda_{\mathrm{tr}}\)
transverse instability threshold and wavelength
- \(\alpha=\eta^{2}/T\)
confinement parameter
- \(\alpha_{\mathrm{lon}}\)
threshold confinement for the longitudinal instability
- \(r_{\mathrm{wr}}\)
(half the) width of the longitudinally wrinkled zone
- \(\Delta \alpha=\alpha-24\)
distance to the threshold confinement
- \(f(r)\)
amplitude of the longitudinal wrinkles
- \(U_{\mathrm{hel}}\), \(U_{\mathrm{FT}}\)
elastic energies (per length) of the helicoid and the far from threshold longitudinally wrinkled state
- \(U_{\mathrm{dom}}\), \(U_{\mathrm{sub}}\)
dominant and subdominant (with respect to \(t\)) parts of \(U_{\mathrm{FT}}\)
- \({\boldsymbol {X}_{\mathrm{cl}}}(s)\)
ribbon centerline
- \(\hat{t} = d\boldsymbol {X}_{\mathrm{cl}}(s)/ds\)
tangent vector in the ribbon midplane
- \(\hat{\boldsymbol {r}}(s)\)
normal to the tangent vector
- \(\hat{\boldsymbol{b}}(s)\)
Frenet binormal to the curve \(\boldsymbol {X}_{\mathrm{cl}}(s)\)
- \(\tau(s), \kappa(s)\)
torsion and curvature of \(\boldsymbol {X}_{\mathrm{cl}}(s)\)
Mathematics Subject Classification (2010)
74K20 53Z05 35Q74 74K35Preview
Unable to display preview. Download preview PDF.
References
- 1.Green, A.E.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 154(882), 430 (1936) CrossRefzbMATHGoogle Scholar
- 2.Green, A.E.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 161(905), 197 (1937). http://www.jstor.org/stable/96910 CrossRefzbMATHGoogle Scholar
- 3.Chopin, J., Kudrolli, A.: Phys. Rev. Lett. 111(17), 174302 (2013). doi: 10.1103/PhysRevLett.111.174302 CrossRefGoogle Scholar
- 4.Mockensturm, E.M.: J. Appl. Mech. 68(4), 561 (2000). doi: 10.1115/1.1357517 CrossRefGoogle Scholar
- 5.Coman, C.D., Bassom, A.P.: Acta Mechanica 200(1–2), 59 (2008). doi: 10.1007/s00707-007-0572-3 CrossRefzbMATHGoogle Scholar
- 6.Sadowsky, M.: Teil II. Verhandl. des 3. Intern. Kongr. f. Techn. Mechanik, 444–451 (1930) Google Scholar
- 7.Korte, A.P., Starostin, E.L., van der Heijden, G.H.M.: Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2125), 285 (2011). doi: 10.1098/rspa.2010.0200 CrossRefzbMATHGoogle Scholar
- 8.Cerda, E., Mahadevan, L.: Phys. Rev. Lett. 90(7), 074302 (2003). doi: 10.1103/PhysRevLett.90.074302 CrossRefGoogle Scholar
- 9.Goriely, A., Nizette, M., Tabor, M.: J. Nonlinear Sci. 11(1), 3 (2001). doi: 10.1007/s003320010009 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Champneys, A.R., Thompson, J.M.T.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 452(1954), 2467 (1996). doi: 10.1098/rspa.1996.0132 MathSciNetCrossRefzbMATHGoogle Scholar
- 11.van der Heijden, G., Thompson, J.: Phys. D: Nonlinear Phenom. 112(1–2), 201 (1998). Proceedings of the Workshop on Time-Reversal Symmetry in Dynamical Systems. doi: 10.1016/S0167-2789(97)00211-X CrossRefGoogle Scholar
- 12.van der Heijden, G.H.M., Thompson, J.M.T.: Nonlinear Dyn. 21(1), 71 (2000). doi: 10.1023/A:1008310425967 CrossRefzbMATHGoogle Scholar
- 13.Santangelo, C.: Geometric frustration in twisted strips. J. Club Condens. Matter Phys. (2014). http://www.condmatjournalclub.org/?p=2330
- 14.Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Proc. Natl. Acad. Sci. 108(45), 18227 (2011). doi: 10.1073/pnas.1108553108 CrossRefGoogle Scholar
- 15.King, H., Schroll, R.D., Davidovitch, B., Menon, N.: Proc. Natl. Acad. Sci. 109(25), 9716 (2012). doi: 10.1073/pnas.1201201109 CrossRefGoogle Scholar
- 16.Grason, G.M., Davidovitch, B.: Proc. Natl. Acad. Sci. 110(32), 12893 (2013). doi: 10.1073/pnas.1301695110 CrossRefGoogle Scholar
- 17.Landau, L.D., Lifchitz, E.M., Kosevitch, A.M., Pitaevski, L.P., Sykes, J.B., Reid, W.: Course of Theoretical Physics: Theory of Elasticity. Butterworth-Heinemann, Stoneham (1986) Google Scholar
- 18.Cranford, S., Buehler, M.J.: Model. Simul. Mater. Sci. Eng. 19(5), 054003 (2011). http://stacks.iop.org/0965-0393/19/i=5/a=054003 CrossRefGoogle Scholar
- 19.Kit, O.O., Tallinen, T., Mahadevan, L., Timonen, J., Koskinen, P.: Phys. Rev. B 85(8), 085428 (2012). doi: 10.1103/PhysRevB.85.085428 CrossRefGoogle Scholar
- 20.Ogden, R.W.: Non-linear Elastic Deformations. Courier Dover Publications, New York (1997) Google Scholar
- 21.Efrati, E., Sharon, E., Kupferman, R.: J. Mech. Phys. Solids 57(4), 762 (2009). doi: 10.1016/j.jmps.2008.12.004 MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Dias, M.A., Hanna, J.A., Santangelo, C.D.: Phys. Rev. E 84(3), 036603 (2011). doi: 10.1103/PhysRevE.84.036603 CrossRefGoogle Scholar
- 23.Hohlfeld, E., Davidovitch, B.: (2014, submitted) Google Scholar
- 24.Stein, M., Hedgepeth, J.M.: Analysis of Partly Wrinkled Membranes. National Aeronautics and Space Administration, Washington (1961) Google Scholar
- 25.Pipkin, A.C.: IMA J. Appl. Math. 36(1), 85 (1986). doi: 10.1093/imamat/36.1.85 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Mansfield, E.H.: The Bending and Stretching of Plates. Cambridge University Press, Cambridge (2005) Google Scholar
- 27.Davidovitch, B., Schroll, R.D., Cerda, E.: Phys. Rev. E 85(6), 066115 (2012). doi: 10.1103/PhysRevE.85.066115 CrossRefGoogle Scholar
- 28.Bella, P., Kohn, R.V.: Commun. Pure Appl. Math. (2013) Google Scholar
- 29.Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, Oxford (2010) Google Scholar
- 30.Huang, J., Davidovitch, B., Santangelo, C.D., Russell, T.P., Menon, N.: Phys. Rev. Lett. 105(3), 038302 (2010). doi: 10.1103/PhysRevLett.105.038302 CrossRefGoogle Scholar
- 31.Vandeparre, H., Piñeirua, M., Brau, F., Roman, B., Bico, J., Gay, C., Bao, W., Lau, C.N., Reis, P.M., Damman, P.: Phys. Rev. Lett. 106, 224301 (2011). doi: 10.1103/PhysRevLett.106.224301 CrossRefGoogle Scholar
- 32.Schroll, R.D., Adda-Bedia, M., Cerda, E., Huang, J., Menon, N., Russell, T.P., Toga, K.B., Vella, D., Davidovitch, B.: Phys. Rev. Lett. 111(1), 014301 (2013). doi: 10.1103/PhysRevLett.111.014301 CrossRefGoogle Scholar
- 33.Pogorelov, A.: Extrinsic Geometry of Convex Surfaces Google Scholar
- 34.Witten, T.A.: Rev. Mod. Phys. 79, 643 (2007). doi: 10.1103/RevModPhys.79.643 CrossRefzbMATHGoogle Scholar
- 35.Sharon, E., Roman, B., Marder, M., Shin, G.S., Swinney, H.L.: Nature 419(6907), 579 (2002). doi: 10.1038/419579a CrossRefGoogle Scholar
- 36.Audoly, B., Boudaoud, A.: Phys. Rev. Lett. 91, 086105 (2003). doi: 10.1103/PhysRevLett.91.086105 CrossRefGoogle Scholar
- 37.Klein, Y., Venkataramani, S., Sharon, E.: Phys. Rev. Lett. 106, 118303 (2011). doi: 10.1103/PhysRevLett.106.118303 CrossRefGoogle Scholar
- 38.Gemmer, J.A., Venkataramani, S.C.: Nonlinearity 25(12), 3553 (2012). http://stacks.iop.org/0951-7715/25/i=12/a=3553 MathSciNetCrossRefzbMATHGoogle Scholar
- 39.Giomi, L., Mahadevan, L.: Phys. Rev. Lett. 104, 238104 (2010). doi: 10.1103/PhysRevLett.104.238104 CrossRefGoogle Scholar
- 40.Kohn, R.V., Nguyen, H.M.: J. Nonlinear Sci. 23(3), 343 (2013). doi: 10.1007/s00332-012-9154-1 MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Audoly, B., Boudaoud, A.: J. Mech. Phys. Solids 56(7), 2444 (2008). doi: 10.1016/j.jmps.2008.03.001 MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Michell, J.: Messenger of Math. 11, 181 (1889–1890) Google Scholar
- 43.Goriely, A.: J. Elast. 84(3), 281 (2006). doi: 10.1007/s10659-006-9055-3 MathSciNetCrossRefzbMATHGoogle Scholar
- 44.Majumdar, A., Prior, C., Goriely, A.: J. Elast. 109(1), 75 (2012). doi: 10.1007/s10659-012-9371-8 MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013) zbMATHGoogle Scholar
- 46.Ashwell, D.G.: Q. J. Mech. Appl. Math. 15(1), 91 (1962). doi: 10.1093/qjmam/15.1.91 MathSciNetCrossRefzbMATHGoogle Scholar
- 47.Nayyar, V., Ravi-Chandar, K., Huang, R.: Int. J. Solids Struct. 48(25–26), 3471 (2011). doi: 10.1016/j.ijsolstr.2011.09.004 CrossRefGoogle Scholar
- 48.Healey, T., Li, Q., Cheng, R.B.: J. Nonlinear Sci. 23(5), 777 (2013). doi: 10.1007/s00332-013-9168-3 MathSciNetCrossRefzbMATHGoogle Scholar
- 49.Kim, T.Y., Puntel, E., Fried, E.: Int. J. Solids Struct. 49(5), 771 (2012). doi: 10.1016/j.ijsolstr.2011.11.018 CrossRefGoogle Scholar
- 50.Lee, C., Wei, X., Kysar, J.W., Hone, J.: Science 321(5887), 385 (2008) CrossRefGoogle Scholar
- 51.Novoselov, K.S., Fal[prime]ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: Nature 490(7419), 192 (2012). doi: 10.1038/nature11458 CrossRefGoogle Scholar
- 52.Mahadevan, L., Vaziri, A., Das, M.: Europhys. Lett. 77(4), 40003 (2007). http://stacks.iop.org/0295-5075/77/i=4/a=40003 CrossRefGoogle Scholar
- 53.Schroll, R.D., Katifori, E., Davidovitch, B.: Phys. Rev. Lett. 106, 074301 (2011). doi: 10.1103/PhysRevLett.106.074301 CrossRefGoogle Scholar
- 54.Klein, Y., Efrati, E., Sharon, E.: Science 315(5815), 1116 (2007). doi: 10.1126/science.1135994 MathSciNetCrossRefzbMATHGoogle Scholar
- 55.Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C.: Science 335(6073), 1201 (2012). doi: 10.1126/science.1215309 MathSciNetCrossRefGoogle Scholar