Skip to main content

Simulating Crop Growth and Development Using Functional-Structural Plant Modeling

  • Chapter
Book cover Canopy Photosynthesis: From Basics to Applications

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

Crop canopies are composed of individual plants. Yet, in the analysis of crop characteristics such as canopy photosynthesis, growth and performance, plants are normally not considered as individual entities with their own developmental pattern and plastic responses to their environment. Therefore, in research questions that implicitly or explicitly contain aspects of individual plant development, modelling tools that scale up processes at the level of the plant to the level of the canopy can be used. In this chapter, the functional-structural plant (FSP) modelling approach will be introduced. FSP modelling provides the possibilities to simulate individual plants in a stand setting, and their architecture in 3D over time. It can take into account light interception and scattering at the level of the leaf as a function of leaf size, angle and optical properties, and use this information to determine photosynthesis, photomorphogenesis, and overall plant growth and development. Therefore, FSP modelling can be used to translate individual plant behaviour to whole canopy performance while taking into account phenotypic variation between individuals and plastic responses to local conditions, as well as the consequences of active manipulation of plant architecture such as pruning or herbivory.

This chapter will treat the underlying principles of FSP modelling as well as the calibration and validation of such models. It will subsequently describe how the interaction between light and a canopy composed of individual plants with their own architecture can be simulated, and how the feedback of photosynthesis, carbon allocation and growth as well as photomorphogenetic processes on light capture can be included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Moment of blade appearance

FSP:

Functional-Structural Plant

k 1 :

Maximum slope of blade length curve

k 2 :

Maximum slope of the final blade length curve

l :

Normalized blade length

l f :

Final blade length

l f,m :

Maximum final blade length on a stem

LAI :

Leaf area index

LED:

Light emitting diode

p :

Phytomer rank

p o :

Phytomer rank at first emerging leaf

PAR :

Photosynthetically active radiation

phyl :

Phyllochron

R:FR:

Red to far-red ratio

p m :

Phytomer rank at maximum final blade length

SLA :

Specific leaf area

SVAT:

Soil -vegetation-atmosphere transfer

tt :

Blade age at the inflection point of the relationship between final blade length and phytomer rank

Z:

Slope of the phytochrome status to red far-red curve

ϕ :

The phytochrome status ζ – Red to far-red ratio

ϕ r :

Phytochrome status at saturating red light

ϕ fr :

Phytochrome status at saturating far-red light.

References

  • Allen MT, Prusinkiewicz P, DeJong TM (2005) Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytol 166:869–880

    Article  PubMed  CAS  Google Scholar 

  • Barbier de Reuille P, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  CAS  Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, …, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Google Scholar 

  • Bongers FJ, Evers JB, Anten NPR, Pierik R (2014) From shade avoidance responses to plant performance at vegetation level: using virtual plant modelling as a tool. New Phytol: 204, 268–272.

    Article  Google Scholar 

  • Borel CC, Gerstl SAW, Powers BJ (1991) The radiosity method in optical remote sensing of structural 3-D surfaces. Remote Sens Environ 36:13–44

    Article  Google Scholar 

  • Boudon F, Pradal C, Cokelaer T, Prusinkiewicz P, Godin C (2012) L-Py: an L-System simulation framework for modeling plant development based on a dynamic language. Front Plant Sci 3:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck-Sorlin GH, de Visser PHB, Henke M, Sarlikioti V, van der Heijden GWAM, Marcelis LFM, Vos J (2011) Towards a functional-structural plant model of cut-rose – simulation of light environment, light absorption, photosynthesis and interferences with the plant structure. Ann Bot 108:1121–1134

    Article  PubMed  PubMed Central  Google Scholar 

  • Burema BS (2007) Arabidopsis silicana, Shade Avoidance Responses in a Virtual Plant Model. MSc Thesis Plant Sciences, Wageningen UR, Wageningen

    Google Scholar 

  • Casal JJ, Sánchez RA, Deregibus VA (1986) The effect of plant density on tillering: the involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–371

    Article  Google Scholar 

  • Casal JJ, Sánchez RA, Deregibus VA (1987) Tillering responses of Lolium multiflorum plants to changes of red/far-red ratio typical of sparse canopies. J Exp Bot 38:1432–1439

    Article  Google Scholar 

  • Chelle M (2006) Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? Ecol Model 198:219–228

    Article  Google Scholar 

  • Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant canopies. Ecol Model 111:75–91

    Article  Google Scholar 

  • Chelle M, Andrieu B (1999) Radiative models for architectural modelling. Agronomie 19:225–240

    Article  Google Scholar 

  • Chelle M, Evers JB, Combes D, Varlet-Grancher C, Vos J, Andrieu B (2007) Simulation of the three-dimensional distribution of the red:far-red ratio within crop canopies. New Phytol 176:223–234

    Article  PubMed  Google Scholar 

  • Cieslak M, Lemieux C, Hanan J, Prusinkiewicz P (2008) Quasi-Monte Carlo simulation of the light environment of plants. Funct Plant Biol 35:837–849

    Article  Google Scholar 

  • Cieslak M, Seleznyova AN, Hanan J (2011) A functional–structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Ann Bot 107:747–764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Wit M, Pierik R (2016) Photomorphogenesis and photoreceptors. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 171–186

    Chapter  Google Scholar 

  • de Wit M, Kegge W, Evers JB, Vergeer-van Eijk MH, Gankema P, Voesenek LACJ, Pierik R (2012) Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proc Natl Acad Sci U S A 109:14705–14710

    Article  PubMed  PubMed Central  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, …, Diggle AJ (2013) Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372:93124

    Google Scholar 

  • Duursma RA, Medlyn BE (2012) MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions. Geosci Model Dev 5:919–940

    Article  Google Scholar 

  • Evers JB, Vos J, Fournier C, Andrieu B, Chelle M, Struik PC (2005) Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol 166:801–812

    Article  PubMed  Google Scholar 

  • Evers JB, Vos J, Chelle M, Andrieu B, Fournier C, Struik PC (2007) Simulating the effects of localized red:far-red ratio on tillering in spring wheat (Triticum aestivum) using a three-dimensional virtual plant model. New Phytol 176:325–336

    Article  PubMed  Google Scholar 

  • Evers JB, Huth NI, Renton M (2010a) Light extinction in spring wheat canopies in relation to crop configuration and solar angle. In: Li B, Jaeger M, Guo Y (eds) Plant Growth Modelling, Simulation, Visualization and Applications – PMA09. IEEE, Beijing, China, pp 107–110

    Google Scholar 

  • Evers JB, Vos J, Yin X, Romero P, van der Putten PEL, Struik PC (2010b) Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot 61:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Evers JB, van der Krol AR, Vos J, Struik PC (2011) Understanding shoot branching by modelling form and function. Trends Plant Sci 16:464–467

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152:1914–1927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fournier C, Durand JL, Ljutovac S, Schaufele R, Gastal F, Andrieu B (2005) A functional-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytol 166:881–894

    Article  PubMed  CAS  Google Scholar 

  • Gautier H, Mĕch R, Prusinkiewicz P, Varlet-Grancher C (2000) 3D Architectural modelling of aerial photomorphogenesis in white clover (Trifolium repens L.) using L-systems. Ann Bot 85:359–370

    Article  Google Scholar 

  • Godin C, Sinoquet H (2005) Functional-structural plant modelling. New Phytol 166:705–708

    Article  PubMed  Google Scholar 

  • Goudriaan J (1988) The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric For Meteorol 43:155–169

    Article  Google Scholar 

  • Goudriaan J (2016) Light distribution. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Goudriaan J, Van Laar HH (1994) Modelling Potential Crop Growth Processes. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Grossman YL, DeJong TM (1998) Training and pruning system effects on vegetative growth potential, light interception, and cropping efficiency in peach trees. J Am Soc Hortic Sci 123:1058–1064

    Google Scholar 

  • Guo Y, Ma Y, Zhan Z, Li B, Dingkuhn M, Luquet D, De Reffye P (2006) Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann Bot 97:217–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin GH (2008) The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct Plant Biol 35:739–750

    Article  Google Scholar 

  • Heuvelink E (1996) Dry matter partitioning in tomato: validation of a dynamic simulation model. Ann Bot 77:71–80

    Article  Google Scholar 

  • Hikosaka K, Noguchi K, Terashima I (2016a) Modeling leaf gas exchange. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 61–100

    Chapter  Google Scholar 

  • Hikosaka K, Kumagai T, Ito A (2016b) Modeling canopy photosynthesis. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Hirose T, Werger MJA (1995) Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76:466–474

    Article  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces Sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci U S A 107:22740–22744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kniemeyer O, Buck-Sorlin GH, Kurth W (2007) GroIMP as a platform for functional-structural modelling of plants. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-Structural Plant Modelling in Crop Production. Springer, Dordrecht, pp 43–52

    Chapter  Google Scholar 

  • Kobayashi H, Baldocchi DD, Ryu Y, Chen Q, Ma S, Osuna JL, Ustin SL (2012) Modeling energy and carbon fluxes in a heterogeneous oak woodland: a three-dimensional approach. Agric For Meteorol 152:83–100

    Article  Google Scholar 

  • Kurth W, Kniemeyer O, Buck-Sorlin G (2005) Relational growth grammars – a graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre J-P, Fradet P, Giavitto J-L, Michel O (eds) Unconventional Programming Paradigms. Springer, Berlin/Heidelberg, p 97

    Google Scholar 

  • Marcelis LFM, Heuvelink E (2007) Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-Structural Plant Modelling in Crop Production. Springer, Dordrecht, pp 103–111

    Chapter  Google Scholar 

  • McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agr Sci 143:137–150.

    Article  Google Scholar 

  • McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monsi M, Saeki T (1953) Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. Jpn J Bot 14:22–52. Translated as: Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Müller J, Wernecke P, Diepenbrock W (2005) LEAFC3-N: a nitrogen-sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecol Model 183:183–210

    Article  Google Scholar 

  • Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C (2008) OpenAlea: a visual programming and component-based software platform for plant modelling. Funct Plant Biol 35:751–760

    Article  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The Algorithmic Beauty of Plants. Springer, New York

    Book  Google Scholar 

  • Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569

    Article  PubMed  CAS  Google Scholar 

  • Prusinkiewicz P, Karwowski R, Lane B (2007) Modelling architecture of crop plants using L-systems. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-Structural Plant Modelling in Crop Production. Springer, Dordrecht, pp 27–42

    Chapter  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 106:17431–17436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roeder AHK, Tarr PT, Tobin C, Zhang X, Chickarmane V, Cunha A, Meyerowitz EM (2011) Computational morphodynamics of plants: integrating development over space and time. Nat Rev Mol Cell Biol 12:265–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Room PM, Hanan JS, Prusinkiewicz P (1996) Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends Plant Sci 1:33–38

    Article  Google Scholar 

  • Sarlikioti V, de Visser PHB, Marcelis LFM (2011) Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model. Ann Bot 107:875–883

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P (1998) Characterization of the light environment in canopies using 3D digitising and image processing. Ann Bot 82:203–212

    Article  Google Scholar 

  • Smith H, Holmes MG (1977) The function of phytochrome in the natural environment. 3. Measurement and calculation of phytochrome photoequilibria. Photochem Photobiol 25:547–550

    Article  CAS  Google Scholar 

  • Spitters CJT (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part II. Calculation of canopy photosynthesis. Agric For Meteorol 38:231–242

    Article  Google Scholar 

  • Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric For Meteorol 38:217–229

    Article  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, …, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164176

    Google Scholar 

  • Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (2007) Functional-Structural Plant Modelling in Crop Production. Springer, Dordrecht

    Book  Google Scholar 

  • Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010) Functional-structural plant modelling: a new versatile tool in crop science. J Exp Bot 61:2102–2115

    Article  Google Scholar 

  • Wiechers D, Kahlen K, Stützel H (2011) Dry matter partitioning models for the simulation of individual fruit growth in greenhouse cucumber canopies. Ann Bot 108:1075–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Henke M, Zhu J, Kurth W, Buck-Sorlin G (2011) A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes. Ann Bot 107:817–828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yin X, Van Laar HH (2005) Crop Systems Dynamics – An Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Yin X, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ (2003) A flexible sigmoid function of determinate growth. Ann Bot 91:361–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Van der Werf W, Anten NPR, Vos J, Evers JB (2015) The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol 207:1213–1222

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochem B. Evers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evers, J.B. (2016). Simulating Crop Growth and Development Using Functional-Structural Plant Modeling. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_8

Download citation

Publish with us

Policies and ethics