Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

This chapter describes (1) how light distributes within a leaf canopy and (2) light interception by leaves. Basic equations are shown so that readers can make light distribution models by themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

F :

Fraction

h :

Height

I c :

Absorbed flux per leaf area

I d :

Downward flux

Ι u :

Upward flux

k :

Light extinction coefficient

k′:

Light extinction coefficient for “black” leaves

L :

Cumulative amount of leaf area per unit soil area

L t :

Total amount of leaf area per unit soil area

LAI :

Leaf area index

N :

Sky radiance

n :

Layer

NIR:

Near infrared radiation

p :

Path width

PAR :

Photosynthetically active radiation

r :

Radius

S :

Soil surface

T :

Temperature in Kelvin

UOC:

Uniform overcast sky

UV:

Ultraviolet radiation

w :

Width

α :

Azimuth

β :

Solarelevation

ζ :

Angle between leaf normal and solar ray

ρ :

Reflection coefficient

λ :

Leaf angle

σ :

Scattering coefficient

τ :

Transmission coefficient

References

  • Anten NPR, Bastiaans L (2016) The use of canopy models to analyze light competition among plants. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 379–395

    Chapter  Google Scholar 

  • Campbell G (1990) Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agri For Meteorol 49:173–176

    Article  Google Scholar 

  • Colaizzi PD, Evett SR, Howell TA, Li F, Kustas WP, Anderson MC (2012) Radiation model for row crops: I. Geometric view factors and parameter optimization. Agron J 104:225–240

    Article  Google Scholar 

  • Cowan IR (1968) The interception and absorption of radiation in plant stands. J Appl Ecol 5:367–379

    Article  Google Scholar 

  • de Wit CT (1965) Photosynthesis of Leaf Canopies. Centre for Agricultural Publications and Documentation, Wageningen

    Google Scholar 

  • Evers JB (2016) Simulating crop growth and development using functional-structural plant modeling. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 219–236

    Chapter  Google Scholar 

  • Gates DM (1980) Biophysical Ecology. Springer, New York

    Book  Google Scholar 

  • Gausman HW, Allen WA (1973) Optical parameters of leaves of 30 plant species. Plant Physiol 52:57–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gijzen H, Goudriaan J (1989) A flexible and explanatory model of light distribution and photosynthesis in row crops. Agri For Meteorol 48:1–20

    Article  Google Scholar 

  • Goudriaan J (1977) Crop Micrometeorology: A Simulation Study, Simulation monographs. Pudoc, Wageningen

    Google Scholar 

  • Goudriaan J (1988) The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange. Agri For Meteorol 38:251–255

    Google Scholar 

  • Goudriaan J, Van Laar HH (1994) Modelling Potential Crop Growth Processes. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Hikosaka K, Kumagai T, Ito A (2016) Modeling canopy photosynthesis. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant Physiological Ecology. Springer, Berlin

    Book  Google Scholar 

  • Lanczos C (1957) Applied Analysis. Pitman and Sons, London

    Google Scholar 

  • Marshal B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. J Exp Bot 31:29–39

    Article  Google Scholar 

  • McCree KJ (1981) Photosynthetically active radiation. In: Encyclopedia of Plant Physiology, vol 12A. Springer, Berlin, pp 41–55

    Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52. Translated as: Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of Environmental Physics. Edward Arnold, London

    Google Scholar 

  • Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Phillips KJH (1992) Guide to the Sun. Cambridge University Press, Cambridge

    Google Scholar 

  • Pons TL (2016) Regulation of leaf traits in canopy gradients. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 143–168

    Chapter  Google Scholar 

  • Pronk AA, Goudriaan J, Stilma E, Challa H (2003) A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar. Neth J Agric Sci 51:279–295

    Google Scholar 

  • Röhrig M, Stützel H, Alt C (1999) A three-dimensional approach to modeling light interception in heterogeneous canopies. Agron J 91:1024–1032

    Article  Google Scholar 

  • Ross J (1981) The Radiation Regime and Architecture of Plant Stands. Dr W Junk Publishers, The Hague

    Book  Google Scholar 

  • Scheid F (1968) Numerical Analysis, Schaum’s outline series. McGraw-Hill Book Company, New York

    Google Scholar 

  • Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agri For Meteorol 38:217–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Goudriaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goudriaan, J. (2016). Light Distribution. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_1

Download citation

Publish with us

Policies and ethics