Skip to main content

Abstract

Vegetation canopies are efficient in removing ozone (O3) from the atmosphere making surface dry deposition an important process in air quality but also in climate change. O3 is the 3rd most important greenhouse gas (IPCC) responsible for ~25 % of the total net radiative forcing attributed to human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altimir N, Kolari P, Tuovinen J-P, Vesala T, Bäck J, Suni T, Kulmala L, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3:1–20

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Modelling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16 (paper no 1080)

    Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, van der Hoek KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cycle 11:561–587

    Article  CAS  Google Scholar 

  • Breuninger C, Oswald R, Kesselmeier J, Meixner FX (2012) The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O-3) between plants and the atmosphere in the laboratory and in the field. Atmos Meas Tech 5:955–989

    Article  CAS  Google Scholar 

  • Büker P, Morrissey T, Briolat A, Falk R, Simpson D, Tuovinen J-P, Alonso R, Barth S, Baumgarten M, Grulke N, Karlsson PE, King J, Lagergren F, Matyssek R, Nunn A, Ogaya R, Penuelas J, Rhea L, Schaub M, Uddling J, Werner W, Emberson LD (2012) DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmos Chem Phys 12:5537–5562

    Article  Google Scholar 

  • Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80:369–399

    Article  Google Scholar 

  • da Rocha HR, Goulden ML, Miller CD, Menton MC, Pinto LDVO, de Freitas HC, e Silva Figueira AM (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:S22–S32

    Article  Google Scholar 

  • Damköhler G (1940) Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 46:601–652

    Google Scholar 

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage 258:1814–1823

    Article  Google Scholar 

  • Denmead OT, Bradley EF (1987) On scalar transport in plant canopies. Irrig Sci 8:131–149

    Article  Google Scholar 

  • Duyzer J et al (2005) A simple model to estimate exchange rates of nitrogen dioxide between the atmosphere and forests. Biogeosci Discuss 2:1033–1065

    Article  Google Scholar 

  • Duyzer J, Weststrate H, Walton S (1995) Exchange of ozone and nitrogen oxides between the atmosphere and coniferous forest. Water Air Soil Pollut 85:2065–2070

    Article  CAS  Google Scholar 

  • Duyzer JH, Dorsey JR, Gallagher MW, Pilegaard K, Walton S (2004) Oxidized nitrogen and ozone interaction with forests. II: Multi-layer process-oriented modelling results and a sensitivity study for Douglas fir. Quarterly J R Meteorol Soc 130:1957–1971

    Google Scholar 

  • Eller AS, Sparks JP (2006) Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant Cell Environ 29:1742–1750

    Article  CAS  Google Scholar 

  • Emberson L, Ashmore M, Simpson D, Tuovinen J-P, Cambridge H (2001a) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130:577–582

    Article  Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Simpson D, Tuovinen JP, Cambridge HM (2001b) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130:577–582

    Article  Google Scholar 

  • Eugster W, Hesterberg R (1996) Transfer resistances of NO2 determined from eddy correlation flux measurements over a litter meadow at a rural site on the Swiss plateau. Atmos Environ 30:1247–1254

    Article  CAS  Google Scholar 

  • Finnigan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger E et al (eds) Stomatal Function. Stanford University Press, Stanford, pp 385–429

    Google Scholar 

  • Fitzjarrald DR, Moore KE (1990) Mechanism of nocturnal exchange between the rain forest and the atmosphere. J Geophys Res 95:16839–816850

    Article  Google Scholar 

  • Flechard CR, Nemitz E, Smith RI, Fowler D, Vermeulen AT, Blecker A, Erisman JW, Simpson DZL, Tang YS, Sutton MA (2011) Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos Chem Phys 11:2703–2728

    Article  CAS  Google Scholar 

  • Foken T et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  CAS  Google Scholar 

  • Forkel R, Klemm O et al (2006) Trace gas exchange and gas phase chemistry in a Norway spruce forest: a study with a coupled 1-dimensional canopy atmospheric chemistry emission model. Atmos Environ 40:28–42

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga GMS, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge

    Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D et al (2009a) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    Article  CAS  Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK, Granier C, Neftel A, Isaksen ISA, Laj P, Maione M, Monks PS, Burkhardt J, Daemmgen U, Neirynck J, Personne E, Wichink-Kruit R, Butterbach-Bahl K, Flechard C, Tuovinen JP, Coyle M, Gerosa G, Loubet B, Altimir N, Gruenhage L, Ammann C, Cieslik S, Paoletti E, Mikkelsen TN, Ro-Poulsen H, Cellier P, Cape JN, Horváth L, Loreto F, Niinemets Ü, Palmer PI, Rinne J, Misztal P, Nemitz E, Nilsson D, Pryor S, Gallagher MW, Vesala T, Skiba U, Brüggemann N, Zechmeister-Boltenstern S, Williams J, O’Dowd C, Facchini MC, de Leeuw G, Flossman A, Chaumerliac N, Erisman JW (2009b) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Ganzeveld L, Bouwman L, Stehfest E, van Vuuren DP, Eickhout B, Lelieveld J (2010) Impact of future land use and land cover changes on atmospheric chemistry-climate interactions. Journal of Geophysical Research-Atmospheres 115

    Google Scholar 

  • Ganzeveld L, Eerdekens G, Feig G, Fischer H, Harder H, Konigstedt R, Kubistin D, Martinez M, Meixner FX, Scheeren HA, Sinha V, Taraborrelli D, Williams J, de Arellano JVG, Lelieveld J (2008) Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign. Atmos Chem Phys 8:6223–6243

    Article  CAS  Google Scholar 

  • Ganzeveld L, Lelieveld J (1995) Dry deposition parameterization in a chemistry general-circulation model and its influence on the distribution of reactive trace gases. J Geophys Res-Atmos 100:20999–21012

    Article  Google Scholar 

  • Ganzeveld L, Lelieveld J, Dentener FJ, Krol MC, Bouwman AF, Roelofs GJ (2002a) The influence of soil-biogenic NOx emissions on the global distribution of reactive trace gases: the role of canopy processes. J Geophys Res 107

    Google Scholar 

  • Ganzeveld L, Lelieveld J, Dentener FJ, Krol MC, Roelofs GJ (2002b) Atmosphere-biosphere trace gas exchanges simulated with a single-column model. J Geophys Res 107

    Google Scholar 

  • Gao W, Wesely ML, Doskey PV (1993) Numerical modeling of the turbulent-diffusion and chemistry of Nox, O3, isoprene, and other reactive trace gases in and above a forest canopy. J Geophys Res-Atmos 98:18339–18353

    Article  CAS  Google Scholar 

  • Gibelin AL, Calvet JC, Roujean JL, Jarlan L, Los SO (2006) Ability of the land surface model ISBA-A-gs to simulate leaf area index at the global scale: comparison with satellites products. J Geophys Res 111

    Google Scholar 

  • Goldstein AH, McKay M, Kurpius MR, Schade GW, Lee A, Holzinger R, Rasmussen RA (2004) Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys Res Lett 31

    Google Scholar 

  • Grontoft T, Henriksen JF, Seip HM (2004) The humidity dependence of ozone deposition onto a variety of building surfaces. Atmos Environ 38:59–68

    Article  CAS  Google Scholar 

  • Gut A, Scheibe M, Rottenberger S, Rummel U, Welling M, Ammann C, Kirkman GA, Kuhn U, Meixner FX, Kesselmeier J, Lehmann BE, Schmidt W, Muller E, Piedade MTF (2002) Exchange fluxes of NO2 and O-3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res-Atmos 107

    Google Scholar 

  • Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen-compounds—a review of leaf, canopy and non-foliar measurements. Atmos Environ Part A-Gen Top 25:1615–1634

    Article  Google Scholar 

  • Hari P, Raivonen M, Vesala T, Munger JW, Pilegaard K, Kulmala M (2003) Atmospheric science—Ultraviolet light and leaf emission of NOx. Nature 422:134

    Article  CAS  Google Scholar 

  • Heal MR, Booth BBB, Cape JN, Hargreaves KJ (2001) The influence of simplified peroxy radical chemistry on the interpretation of NO2-NO-O3 surface exchange. Atmos Environ 35:1687–1696

    Article  CAS  Google Scholar 

  • Hereid DP, Monson RK (2001) Nitrogen oxide fluxes between corn (Zea mays L.) leaves and the atmosphere. Atmos Environ 35:975–983

    Article  CAS  Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker RP Jr, Matt DR (1987a) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987b) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Holland EA, Braswell BH, Lamarque JF, Townsend A, Sulzman J, Muller JF, Dentener F, Brasseur G, Levy H, Penner JE, Roelofs GJ (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res-Atmos 102:15849–15866

    Article  CAS  Google Scholar 

  • Hudman RC, Moore NE, Mebust AK, Martin RV, Russell AR, Valin LC, Cohen RC (2012) Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos Chem Phys 12:7779–7795

    Article  CAS  Google Scholar 

  • Jacob DJ, Wofsy SC (1990) Budgets of reactive nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season. JGeophys Res 95

    Google Scholar 

  • Jacobs AEG, Boxel JHv, E.-K.M (1994) Nighttime free convection characteristics within a plant canopy. Bound-Layer Meteorol 71:375–391

    Article  Google Scholar 

  • Jaegle L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407–423

    Article  CAS  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans Royal Soc London Ser B 273:593–610

    Article  CAS  Google Scholar 

  • Kisser-Priesack GM, Scheunert I, Gnatz G, Ziegler H (1987) Uptake of (NO2)-N-15 and (NO)-N-15 by plant cuticles. Naturwissenschaften 74:550–551

    Article  CAS  Google Scholar 

  • Lamaud E, Loubet B, Irvine M, Stella P, Personne E, Cellier P (2009) Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling. Agric Meteorol 149:1385–1396

    Article  Google Scholar 

  • Laville P, Lehuger S, Loubet B, Chaumartin F, Cellier P (2011) Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agric Meteorol 151:228–240

    Article  Google Scholar 

  • Lee X, Massman W, Law BE (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lenschow DH (1982a) Reactive trace species in the boundary layer from a micrometeorological perspective. J Meteorol Soc Jpn 60:472–480

    CAS  Google Scholar 

  • Lenschow DH (1982b) Reactive trace species in the boundary layer from a micrometeorological perspective. J Meteorol Soc Jpn 60:472–480

    CAS  Google Scholar 

  • Lerdau MT, Munger LJ, Jacob DJ (2000) Atmospheric chemistry—the NO2 flux conundrum. Science 289:2291–2293

    Article  CAS  Google Scholar 

  • Loubet B, Cellier P, Milford C, Sutton MA (2006) A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia. Q J R Meteorol Soc 132:1733–1763

    Article  Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Foerstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257

    Article  CAS  Google Scholar 

  • Neubert A, Kley D, Wildt J, Segschneider HJ, Forstel H (1993) Uptake of NO, No2 and O3 by Sunflower (Helianthus-Annuus L) and Tobacco Plants (Nicotiana-Tabacum-L)—dependence on stomatal conductivity. Atmos Environ Part A-Gen Top 27:2137–2145

    Article  Google Scholar 

  • Pape L, Ammann C, Nyfeler-Brunner A, Spirig C, Hens K, Meixner FX (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429

    Article  CAS  Google Scholar 

  • Parton et al (2001) Generalized model for NOx and N2O emissions from soils. J Geophys Res 106:17403–417419

    Article  CAS  Google Scholar 

  • Patton EG, Davis KJ, Barth MC, Sullivan PP (2001) Decaying scalars by a forest canopy, a numerical study. Bound-Layer Meteorol 100:91–129

    Article  Google Scholar 

  • Pilegaard K (2001) Air–soil exchange of NO, NO2, and O3 in forests. Water Air Soil Pollut Focus 1:79–88

    Article  CAS  Google Scholar 

  • Pilegaard K, Hummelshoj P, Jensen ES (1998) Fluxes of ozone and nitrogen dioxide measured by eddy correlation over a harvested wheat field. Atmos Environ 32:1167–1177

    Article  CAS  Google Scholar 

  • Pilegaard K, Jensen NO, Hummelshoj P (1997) Ozone fluxes over forested ecosystems and mechanisms of removal. In: Larsen B et al (eds) The oxidizing capacity of the troposphere, Air pollution research report No. 60. European Commission, Ispra and Brussels

    Google Scholar 

  • Raivonen M, Bonn B, Sanz MJ, Vesala T, Kulmala M, Hari P (2006) UV-induced NOy emissions from Scots pine: could they originate from photolysis of deposited HNO3? Atmos Environ 40:6201–6213

    Article  CAS  Google Scholar 

  • Raupach MR (1989a) A pratical Lagrangian method for relating scalar concentrations to source distribution in vegetation canopies. Q J R Meteorol Soc 115:609–632

    Article  Google Scholar 

  • Raupach MR (1989b) Stand overstorey processes. Philos Trans R Soc London B 324:175–190

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Layer Meteorol 78:351–382

    Article  Google Scholar 

  • Rolland MN, Gabrielle B, Laville P, Cellier P, Beekmann M, Gilliot JM, Michelin J, Hadjar D, Curci G (2010) High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region. Environ Pollut 158:711–722

    Article  CAS  Google Scholar 

  • Rummel U, Ammann C, Gut A, Meixner FX, Andreae MO (2002) Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest. J Geophys Res-Atmos 107

    Google Scholar 

  • Rummel U, Ammann C, Kirkman GA, Moura MAL, Foken T, Andreae MO, Meixner FX (2007) Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia. Atmos Chem Phys 7:5415–5435

    Article  CAS  Google Scholar 

  • Sakalli A, Simpson D (2012) Towards the use of dynamic growing seasons in a chemical transport model. Biogeosci Discuss 9:12137–12180

    Article  Google Scholar 

  • Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Layer Meteorol 140:429–451

    Article  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794

    Article  CAS  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228

    Article  CAS  Google Scholar 

  • Steinkamp J, Lawrence MG (2011) Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM. Atmos Chem Phys 11:6063–6082

    Article  CAS  Google Scholar 

  • Stella PBL, Lamaud E, Laville P, Cellier P (2011a) Ozone deposition onto bare soil: a new parameterisation. Agric For Meteorol 151:669–681

    Article  Google Scholar 

  • Stella P, Loubet B, Lamaud E, Laville P, Cellier P (2011b) Ozone deposition onto bare soil: a new parameterisation. Agric Meteorol 151:669–681

    Article  Google Scholar 

  • Stella P, Loubet B, Laville P, Lamaud E, Cazaunau M, Laufs S, Bernard F, Grosselin B, Mascher N, Kurtenbach R, Mellouki A, Kleffmann J, Cellier P (2012) Comparison of methods for the determination of NO-O3-NO2 fluxes and chemical interactions over a bare soil. Atmos Measur Tech 1241–1257

    Google Scholar 

  • Stella P, Personne E, Loubet B, Lamaud E, Ceschia E, Béziat P, Bonnefond JM, Irvine M, Keravec P, Mascher N, Cellier P (2011c) Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatm-O3 model. Biogeosciences 8:2869–2886

    Article  CAS  Google Scholar 

  • Stella P, Personne E, Loubet B, Lamaud E, Ceschia E, Bonnefond JM, Beziat P, Keravec P, Mascher N, Irvine M, Cellier P (2011d) Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatm-O3 model. Biogeosciences 8:2869–2886

    Article  CAS  Google Scholar 

  • Teklemariam TA, Sparks JP (2006) Leaf fluxes of NO and NO2 in four herbaceous plant species: the role of ascorbic acid. Atmos Environ 40:2235–2244

    Article  CAS  Google Scholar 

  • Thoene B, Rennenberg H, Weber P (1996) Absorption of atmospheric NO2 by spruce (Picea abies) trees.2. Parameterization of NO2 fluxes by controlled dynamic chamber experiments. New Phytol 134:257–266

    Article  CAS  Google Scholar 

  • Tuzet A, Perrier A, Loubet B, Cellier P (2011) Modelling ozone deposition fluxes: the relative roles of deposition and detoxification processes. Agric Meteorol 151:480–492

    Article  Google Scholar 

  • van Pul WAJ, Jacobs AFG (1994) The conductance of a maize crop and the underlying soil to ozone under various environmental conditions. Bound-Layer Meteorol 69:83–99

    Article  Google Scholar 

  • Vila-Gureau de Arellano J, Duynkerke PG (1992) Influence of chemistry on the flux-gradient relationships for the NO-O3-NO2 system. Bound-Layer Meteorol 61:375–387

    Article  Google Scholar 

  • Vinuesa JF, Porte-Agel F, Basu S, Stoll R (2006) Subgrid-scale modeling of reacting scalar fluxes in large-eddy simulations of atmospheric boundary layers. Environ Fluid Mech 6:115–131

    Article  Google Scholar 

  • Walton S, Gallagher MW, Choularton TW, Duyzer J (1997a) Ozone and NO2 exchange to fruit orchards. Atmos Environ 31

    Google Scholar 

  • Walton S, Gallagher MW, Duyzer JH (1997b) Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy. Atmos Environ 31:2915–2931

    Article  CAS  Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models. Atmos Environ 23:1293–1304

    Article  CAS  Google Scholar 

  • Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    Article  CAS  Google Scholar 

  • Wolfe GM, Thornton JA (2011) The chemistry of atmosphere-forest exchange (CAFE) model—part 1: model description and characterization. Atmos Chem Phys 11:77–101

    Article  CAS  Google Scholar 

  • Wolfe GM, Thornton JA, McKay M, Goldstein AH (2011) Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmos Chem Phys 11(15):7875–7891

    Article  CAS  Google Scholar 

  • Yienger JJ, Levy H II (1995) Empirical-model of global soil-biogenic NOx emissions. J Geophys Res-Atmos 100:11447–11464

    Article  CAS  Google Scholar 

  • Zhang L, Brook JR, Vet R (2002) On ozone dry deposition-with emphasis on non-stomatal uptake and wet canopies. Atmos Environ 36:4787–4799

    Article  CAS  Google Scholar 

  • Zhou XL, Gao HL, He Y, Huang G, Bertman SB, Civerolo K, Schwab J (2003) Nitric acid photolysis on surfaces in low-NOx environments: significant atmospheric implications. Geophys Res Lett 30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Ganzeveld, L., Ammann, C., Loubet, B. (2015). Modelling Atmosphere-Biosphere Exchange of Ozone and Nitrogen Oxides. In: Massad, RS., Loubet, B. (eds) Review and Integration of Biosphere-Atmosphere Modelling of Reactive Trace Gases and Volatile Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7285-3_3

Download citation

Publish with us

Policies and ethics