Skip to main content

Abstract

The turbulence within and immediately above a vegetation canopy is the driver of the exchange processes of heat, trace gases and particles between the soil, the plants and the atmosphere above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acevedo OC, Fitzjarrald DR (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58:2650–2667

    Google Scholar 

  • Acevedo OC, Fitzjarrald DR (2003) In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Bound-Layer Meteorol 106:1–33

    Google Scholar 

  • Acevedo OC, Moraes OLL, Fitzjarrald DR, Sakai RK, Mahrt L (2007) Turbulent carbon exchange in very stable conditions. Bound-Layer Meteorol 125:49–61

    Google Scholar 

  • Acevedo OC, da Silva R, Fitzjarrald DR, Moraes OLL, Sakai RK, Czikowsky MJ (2008) Nocturnal vertical CO2 accumulation in two Amazonian ecosystems. J Geophys Res 113, paper no. G00B04

    Google Scholar 

  • Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59:51

    Google Scholar 

  • Denmead OT, Bradley EF (1985) Flux-gradient relationships in a forest canopy. In: Hutchison BA, Hicks BB (eds) Forest-atmosphere interactions. D. Reidel, Dordrecht (NLD), pp 421–442

    Google Scholar 

  • Dupont S, Patton EG (2012) Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: the CHATS experiment. Agric For Meteorol 157:11–29

    Google Scholar 

  • Dupont S, Otte TL, Ching JK (2004) Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model. Bound-Layer Meteorol 113:111–158

    Google Scholar 

  • Edburg SL, Stock D, Lamb BK, Patton EG (2012) The effect of the vertical source distribution on scalar statistics within and above a forest canopy. Bound-Layer Meteorol 142:365–382

    Google Scholar 

  • Fitzjarrald DR, Moore KE (1995) Physical mechanisms of heat and mass exchange between forests and the atmosphere. In: Lowman M, Nadkarni N (eds) Forest canopies—a review of research on a biological frontier. Academic Press, San Diego, 624 p

    Google Scholar 

  • Foudhil H, Brunet Y, Caltagirone JP (2005) A fine-scale k − ε model for atmospheric flow over heterogeneous landscapes. Environ Fluid Mech 5:247–265

    Google Scholar 

  • Ganzeveld L, Lelieveld J, Dentener FJ, Krol MC, Bouwman AF, Roelofs GJ (2002a) The influence of soil-biogenic NOx emissions on the global distribution of reactive trace gases: the role of canopy processes. J Geophys Res 107

    Google Scholar 

  • Ganzeveld L, Lelieveld J, Dentener FJ, Krol MC, Roelofs GJ (2002b) Atmosphere-biosphere trace gas exchanges simulated with a single-column model. J Geophys Res 107(D16)

    Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR technical note NCAR/TN-398+STR. doi:10.5065/D60Z716B

  • Hanna SR, Tehranian S, Carissimo B, Macdonald RW, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5079

    Google Scholar 

  • Jacobs AFG, vanBoxel JH, Nieveen J (1996) Nighttime exchange processes near the soil surface of a maize canopy. Agric For Meteorol 82:155–169

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows, their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Kruijt B, Malhi Y, Lloyd J, Norbre AD, Miranda AC, Pereira MGP, Culf A, Grace J (2000) Turbulence statistics above and within two Amazon rain forest canopies. Bound-Layer Meteorol 94:297–331

    Google Scholar 

  • Lalic B, Mihailovic DT (2004) An empirical relation describing leaf area density inside the forest for environmental modelling. J Appl Meteorol 43:641–645

    Google Scholar 

  • Lalic B, Mihailovic DT (2008) Turbulence and wind above and within the forest canopy. In: Gualtieri C, Mihailovic DT (eds) Fluid mechanics of environmental interfaces. Taylor & Francis (GBR), pp 221–240

    Google Scholar 

  • Lalic B, Mihailovic DT, Rajkovic B, Arsenic ID, Radlovic D (2003a) Wind profile within the forest canopy and in the transition layer above it. Environ Model Softw 18:943–950

    Google Scholar 

  • Lalic B, Mihailovic DT, Rajkovic B, Arsenic ID, Radlovic D (2003b) Wind profile within the forest canopy and in the transition layer above it. Environ Model Softw 18:943–950

    Google Scholar 

  • Lalic B, Mihailovic DT, Rajkovic B, Kapor D (2010) An approach to forest-atmosphere interaction modelling: Implications of momentum turbulent transport within the forest. In: Mihailovic DT, Lalic B (eds) Advances in environmental modeling and measurements. Nova Science Publishers, New York, pp 67–76

    Google Scholar 

  • Lee X, Huang J, Patton EG (2012) A large-eddy simulation study of water vapour and carbon dioxide isotopes in the atmospheric boundary layer. Bound-Layer Meteorol 145:229–248

    Google Scholar 

  • Loubet B, Cellier P, Milford C, Sutton MA (2006) A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia. Q J R Meteorol Soc 132:1733–1763

    Google Scholar 

  • Martens CS, Shay TJ, Mendlovitz HP, Matross DM, Saleska SR, Wofsy SC et al (2004) Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods. Glob Change Biol 10:618–629

    Google Scholar 

  • Ogée J, Peylin P, Cuntz M, Bariac T, Brunet Y, Berbigier P, Richard P, Ciais P (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with 13CO2 and CO18O data. Global Biogeochemical Cycles 18:GB2019

    Google Scholar 

  • Patton EG, Shaw RH, Judd MJ, Raupach MR (1998) Large-eddy simulation of windbreak flow. Bound-Layer Meteorol 87:276–306

    Google Scholar 

  • Personne E, Loubet B, Herrmann B, Mattsson M, Schjoerring JK, Nemitz E, Sutton MA, Cellier P (2009) SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale. Biogeosciences 6:1371–1388

    Google Scholar 

  • Raupach MR (1988) Canopy transport processes. In: Steffen WL, Denmead OT (eds) Flow and transport in the natural environment: advances and applications. Springer, Berlin, pp 95–129

    Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Layer Meteorol 78:351–382

    Google Scholar 

  • Ryall DB, Maryon RH, Derwent RG, Simmonds PG (1998) Modelling long-range transport of CFCs to mace head Ireland. Q J R Meteorol Soc 124:417–446

    Google Scholar 

  • Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyri A, Richter C, Semeena VS, Tsyro S, Tuovinen J-P, Valdebenito A, Wind P (2012) The EMEP MSC-W chemical transport model—technical description. Atmos Chem Phys 12:7825–7865

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2 (No. NCAR/TN-468+STR). National Center for Atmospheric Research, Boulder, CO, Mesoscale and Microscale Meteorology Division

    Google Scholar 

  • Sofiev M, Genikhovich E, Keronen P, Vesala T (2010) Diagnosing the surface layer parameters for dispersion models within the meteorological-to-dispersion modeling interface. J Appl Meteorol Climatol 49:221–233

    Google Scholar 

  • Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156

    Google Scholar 

  • Staebler RM, Fitzjarrald DR (2005) Measuring canopy structure and the kinematics of subcanopy flows in two forests. J Appl Meteorol 44:1161–1179

    Google Scholar 

  • Thom AS (1971) Momentum absorption by vegetation. Q J R Meteorol Soc 97:429–439

    Google Scholar 

  • Tóta J, Fitzjarrald DR, Staebler RM, Sakai RK, Moraes OMM, Acevedo OC, Wofsy SC, Manzi O (2009) Amazon rain forest subcanopy flow and the carbon budget: Santarém LBA-ECO site. J Geophys Res G: Biogeosci 114

    Google Scholar 

  • van Gorsel E, Harman IN, Finnigan JJ, Leuning R (2011) Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange. Agric For Meteorol 151:927–933

    Google Scholar 

  • Walton S, Gallagher MW, Duyzer JH (1997) Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy. Atmos Environ 31:2915–2931

    Google Scholar 

  • Wilson C, Stover E, Boman B (2004) Minimizing direct deposition of pesticides into waterways associated with Indian River citrus production. HortTechnol 14:545–550

    Google Scholar 

  • Wu Y, Brashers B, Finkelstein PL, Pleim JE (2003) A multilayer biochemical dry deposition model. 1. Model formulation. J Geophys Res 108, paper no. 4013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Theobald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Éditions Quæ

About this chapter

Cite this chapter

Theobald, M. et al. (2015). In-Canopy Turbulence—State of the Art and Potential Improvements. In: Massad, RS., Loubet, B. (eds) Review and Integration of Biosphere-Atmosphere Modelling of Reactive Trace Gases and Volatile Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7285-3_13

Download citation

Publish with us

Policies and ethics