Skip to main content

Stem Cells and Spinal Cord Regeneration

  • Chapter
  • First Online:
Stem Cells: Basics and Clinical Translation

Part of the book series: Translational Medicine Research ((TRAMERE,volume 1))

  • 1299 Accesses

Abstract

Stem cells are characterized by self-renewal and pluripotency to become any cells in tissues/organs including the central nervous system (CNS), where they may differentiate to neurons and glial cells. The identification and characterization of stem cells have attracted great interest in their potential for treating of various diseases of different organs, as well as the CNS. The spinal cord, as a part of CNS, carries a tight bundle of neural cells and nerve pathways that connect the brain and the peripheral nervous system. Spinal cord injuries (SCI) usually begin with a sudden, mechanical trauma which results in devastating and irreversible consequences including stop of the nerve signaling and serious damage of axons and neural cell membranes beyond repair. The application of stem cells to CNS regeneration is very promising. Results from SCI models showed that transplantation of stem cells or progenitors may support spinal cord repair through the replacement of lost neural cells and the attenuation of gliosis around the rostral and dorsal terminals by the differentiated cells from the implanted stem cells. Axon regeneration-promoting and neuroprotective effects have also been credited to the transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including bioscaffold and ethical concerns. This chapter summarizes the latest research progress and application strategies of stem cells for SCI with the aim to push the medicine translation of stem cell application for spinal cord regeneration and implies the promising future of stem cells in SCI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abematsu M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest. 2010;120(9):3255–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21(10):1355–70.

    Article  PubMed  Google Scholar 

  • Akesson E, et al. Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiol Behav. 2007;92(1–2):60–6.

    Article  PubMed  CAS  Google Scholar 

  • Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell. 2008;3(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  • Barnabe-Heider F, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470–82.

    Article  CAS  PubMed  Google Scholar 

  • Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77.

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai N, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009;21(27):2792–7.

    Google Scholar 

  • Blight A, et al. Position statement on the sale of unproven cellular therapies for spinal cord injury: the international campaign for cures of spinal cord injury paralysis. Spinal Cord. 2009;47(9):713–4.

    Article  CAS  PubMed  Google Scholar 

  • Bretzner F, et al. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell. 2011;8(5):468–75.

    Article  CAS  PubMed  Google Scholar 

  • Brustle O, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999;285(5428):754–6.

    Article  CAS  PubMed  Google Scholar 

  • Cao QL, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol. 2001;167(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  • Cao QL, et al. Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol. 2002;177(2):349–59.

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005;25(30):6947–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Q, et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010;30(8):2989–3001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, et al. Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J Neurotrauma. 2005;22(8):896–906.

    Article  PubMed  Google Scholar 

  • Chiba S, et al. Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant. 2003;12(5):457–68.

    Article  PubMed  Google Scholar 

  • Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006;6(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  • Crigler L, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94(1):1–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cummings BJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA. 2005;102(39):14069–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dasari VR, et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007;24(2):391–410.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dasari VR, et al. Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res. 2008;33(1):134–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  • De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials. 2009;30(12):2361–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deng W, et al. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29(43):13532–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deshpande DM, et al. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006;60(1):32–44.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eftekharpour E, et al. Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J Neurosci. 2007;27(13):3416–28.

    Article  CAS  PubMed  Google Scholar 

  • Erceg S, et al. Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev. 2010a;19(11):1745–56.

    Article  CAS  PubMed  Google Scholar 

  • Erceg S, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010b;28(9):1541–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  • Farry A, Baxter D, editors. The incidence and prevalence of spinal cord injury in Canada: overview and estimates based on current evidence. Canada: Rick Hansen Institute and Urban Futures Institute; 2010. p. 1–49.

    Google Scholar 

  • Fukuchi Y, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):649–58.

    Article  CAS  PubMed  Google Scholar 

  • Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  • Geffner LF, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12):1277–93.

    Article  CAS  PubMed  Google Scholar 

  • Glazova M, et al. Pre-differentiated embryonic stem cells promote neuronal regeneration by cross-coupling of BDNF and IL-6 signaling pathways in the host tissue. J Neurotrauma. 2009;26(7):1029–42.

    Article  PubMed  Google Scholar 

  • Gonzalez F, Boue S, Izpisua Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12(4):231–42.

    Article  CAS  PubMed  Google Scholar 

  • GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature. 2002;417(6888):547–51.

    Article  CAS  PubMed  Google Scholar 

  • Gritti A, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996;16(3):1091–100.

    CAS  PubMed  Google Scholar 

  • Guest JD, et al. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol. 1997;148(2):502–22.

    Article  CAS  PubMed  Google Scholar 

  • Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A. 2005;72(1):91–7.

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, et al. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury. Neurobiol Dis. 2006;22(3):509–22.

    Article  CAS  PubMed  Google Scholar 

  • Han SS, et al. Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol. 2002;177(2):360–75.

    Article  PubMed  Google Scholar 

  • Han SS, et al. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter. Glia. 2004;45(1):1–16.

    Article  PubMed  Google Scholar 

  • Hawryluk GW, et al. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012;21(3):432–47.

    Article  CAS  PubMed  Google Scholar 

  • Hejcl A, et al. Biocompatible hydrogels in spinal cord injury repair. Physiol Res. 2008;57(Suppl 3):S121–32.

    CAS  PubMed  Google Scholar 

  • Hejcl A, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. J Mater Sci Mater Med. 2009;20(7):1571–7.

    Article  CAS  PubMed  Google Scholar 

  • Hejcl A, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010;19(10):1535–46.

    Article  CAS  PubMed  Google Scholar 

  • Hill CE, et al. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Exp Neurol. 2004;190(2):289–310.

    Article  CAS  PubMed  Google Scholar 

  • Himes BT, et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair. 2006;20(2):278–96.

    Article  PubMed  Google Scholar 

  • Hofstetter CP, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofstetter CP, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  • Horky LL, et al. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006;498(4):525–38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Horstmann E. The fiber glia of selacean brain. Z Zellforsch Mikrosk Anat. 1954;39(6):588–617.

    Article  CAS  PubMed  Google Scholar 

  • Howard MJ, et al. Transplantation of apoptosis-resistant embryonic stem cells into the injured rat spinal cord. Somatosens Mot Res. 2005;22(1–2):37–44.

    Article  PubMed  Google Scholar 

  • Hu DZ, et al. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury. Chin J Traumatol. 2005;8(1):23–6.

    CAS  PubMed  Google Scholar 

  • Hu SL, et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med. 2010;38(11):2181–9.

    Article  PubMed  Google Scholar 

  • Hugnot JP, Franzen R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci (Landmark Ed). 2011;16:1044–59.

    Article  CAS  Google Scholar 

  • Hwang DH, et al. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 2009;10:117.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iwanami A, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res. 2005;80(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  • Johnson PJ, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010;6(20):5127–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones LL, et al. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol. 2001;533(Pt 1):83–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang SK, et al. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006;15(4):583–94.

    Article  CAS  PubMed  Google Scholar 

  • Karahuseyinoglu S, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25(2):319–31.

    Article  CAS  PubMed  Google Scholar 

  • Karamouzian S, et al. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012;114(7):935–9.

    Article  PubMed  Google Scholar 

  • Karimi-Abdolrezaee S, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006;26(13):3377–89.

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Abdolrezaee S, et al. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010;30(5):1657–76.

    Article  CAS  PubMed  Google Scholar 

  • Karumbayaram S, et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27(4):806–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki H, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000;28(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  • Keirstead HS, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705.

    Article  CAS  PubMed  Google Scholar 

  • Kubinova S, et al. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials. 2010;31(23):5966–75.

    Article  CAS  PubMed  Google Scholar 

  • Lamba DA, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103(34):12769–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23(3):169–80.

    Article  PubMed  Google Scholar 

  • Lee BB, et al. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  • Li S, et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci. 2004;24(46):10511–20.

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells. 2008;26(4):886–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136(23):4055–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, et al. The epidemiological survey of acute traumatic spinal cord injury (ATSCI) of 2002 in Beijing municipality. Spinal Cord. 2011;49(7):777–82.

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996;271(5251):978–81.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gonzalez R, Kunckles P, Velasco I. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant. 2009;18(10):1171–81.

    Article  PubMed  Google Scholar 

  • Lu P, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003;181(2):115–29.

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol. 2007;203(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.

    Article  PubMed  Google Scholar 

  • Marichal N, et al. Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci. 2009;29(32):10010–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol. 1999;406(4):449–60.

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5(12):1410–2.

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. 2008;107(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  • Meletis K, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6(7):e182.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Menezes AH, et al, editors. Principles of spinal surgery. New York: McGraw Hill Healthcare; 1996.

    Google Scholar 

  • Mitsui T, et al. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci. 2005;25(42):9624–36.

    Article  CAS  PubMed  Google Scholar 

  • Miura K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5.

    Article  CAS  PubMed  Google Scholar 

  • Morshead CM, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13(5):1071–82.

    Article  CAS  PubMed  Google Scholar 

  • Mothe AJ, Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience. 2005;131(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center and Others. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2014;37(2):243–4.

    Google Scholar 

  • Ning GZ, et al. Epidemiology of traumatic spinal cord injury in Tianjin, China. Spinal Cord. 2011;49(3):386–90.

    Article  PubMed  Google Scholar 

  • Nistor GI, et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005;49(3):385–96.

    Article  PubMed  Google Scholar 

  • Nori S, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA. 2011;108(40):16825–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa Y, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002;69(6):925–33.

    Article  CAS  PubMed  Google Scholar 

  • Oh JS, et al. Transplantation of an adipose stem cell cluster in a spinal cord injury. NeuroReport. 2012;23(5):277–82.

    Article  PubMed  Google Scholar 

  • Ohori Y, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci. 2006;26(46):11948–60.

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7.

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  • Pal R, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009;11(7):897–911.

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997;8(6):389–404.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery. 2012;70(5):1238–47; discussion 1247.

    Google Scholar 

  • Park HW, et al. Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia. 2010;58(9):1118–32.

    Article  PubMed  Google Scholar 

  • Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 2007;40(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  • Parras CM, et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 2002;16(3):324–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pataky DM, et al. Fibroblast growth factor treatment produces differential effects on survival and neurite outgrowth from identified bulbospinal neurons in vitro. Exp Neurol. 2000;163(2):357–72.

    Article  CAS  PubMed  Google Scholar 

  • Pego AP, et al. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed. 2001;12(1):35–53.

    Article  CAS  PubMed  Google Scholar 

  • Peng HB, et al. Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci. 2003;23(12):5050–60.

    CAS  PubMed  Google Scholar 

  • Perrier AL, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA. 2004;101(34):12543–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  • Puri MC, Nagy A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  • Rafols JA, Goshgarian HG. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat Rec. 1985;211(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  • Ramon-Cueto A, et al. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci. 1998;18(10):3803–15.

    CAS  PubMed  Google Scholar 

  • Reier PJ. Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx. 2004;1(4):424–51.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reubinoff BE, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1134–40.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  CAS  PubMed  Google Scholar 

  • Rick Hansen Spinal Cord Injury Registry. Spinal Cord Injury Facts and Statistics, Vancouver, British Columbia, Canada. 2006. p. 1–11.

    Google Scholar 

  • Ruff CA, Fehlings MG. Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med. 2010;52(2):125–47.

    CAS  PubMed  Google Scholar 

  • Ruiz G, Banos JE. Heat hyperalgesia induced by endoneurial nerve growth factor and the expression of substance P in primary sensory neurons. Int J Neurosci. 2009;119(2):185–203.

    Article  CAS  PubMed  Google Scholar 

  • Sabourin JC, et al. A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells. 2009;27(11):2722–33.

    Article  CAS  PubMed  Google Scholar 

  • Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  • Schultz SS. Adult stem cell application in spinal cord injury. Curr Drug Targets. 2005;6(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  • Seitz R, Lohler J, Schwendemann G. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study. Cell Tissue Res. 1981;220(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Arai Y. Highly polysialylated NCAM expression in the developing and adult rat spinal cord. Brain Res Dev Brain Res. 1993;73(1):141–5.

    Article  CAS  PubMed  Google Scholar 

  • Sharp J, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010;28(1):152–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sleeman MW, et al. The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv. 2000;74(2–3):265–72.

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan P, et al. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci. 2006;26(12):3256–68.

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan P, et al. Easy and rapid differentiation of embryonic stem cells into functional motoneurons using sonic hedgehog-producing cells. Stem Cells. 2007;25(7):1697–706.

    Article  CAS  PubMed  Google Scholar 

  • Stemple DL, Anderson DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992;71(6):973–85.

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel ME, et al. Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol. 2003;457(2):159–74.

    Article  PubMed  Google Scholar 

  • Su H, et al. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant. 2011;20(2):167–76.

    Article  PubMed  Google Scholar 

  • Sykova E, Jendelova P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann NY Acad Sci. 2005;1049:146–60.

    Article  PubMed  Google Scholar 

  • Sykova E, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15(8–9):675–87.

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  • Tao O, et al. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88(2):234–47.

    Article  CAS  PubMed  Google Scholar 

  • Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5(4):407–13.

    Article  CAS  PubMed  Google Scholar 

  • Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):957–82; discussion 982–7.

    Google Scholar 

  • Tebar LA, et al. Deletion of the mouse RegIIIbeta (Reg2) gene disrupts ciliary neurotrophic factor signaling and delays myelination of mouse cranial motor neurons. Proc Natl Acad Sci USA. 2008;105(32):11400–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.

    Article  CAS  PubMed  Google Scholar 

  • Teng YD, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(5):3024–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teng YD, et al. Physical activity-mediated functional recovery after spinal cord injury: potential roles of neural stem cells. Regen Med. 2006;1(6):763–76.

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron. 2001;30(1):65–78.

    Article  CAS  PubMed  Google Scholar 

  • Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsai EC, et al. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma. 2004;21(6):789–804.

    Article  PubMed  Google Scholar 

  • Tsuji O, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA. 2010;107(28):12704–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tysseling-Mattiace VM, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008;28(14):3814–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigh B, et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol. 2004;19(2):607–28.

    CAS  PubMed  Google Scholar 

  • Vroemen M, et al. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci. 2003;18(4):743–51.

    Article  PubMed  Google Scholar 

  • Wada T, et al. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS ONE. 2009;4(8):e6722.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang HS, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.

    Article  PubMed  Google Scholar 

  • Watanabe K, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288–96.

    Article  CAS  PubMed  Google Scholar 

  • Webber DJ, et al. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med. 2007;2(6):929–45.

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996;16(23):7599–609.

    CAS  PubMed  Google Scholar 

  • Weiss ML, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781–92.

    Article  CAS  PubMed  Google Scholar 

  • Weiss ML, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26(11):2865–74.

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Peljto M. Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr Protoc Stem Cell Biol. 2008. Chapter 1:p. Unit 1H 1 1–1H 1 9.

    Google Scholar 

  • Wichterle H, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110(3):385–97.

    Article  CAS  PubMed  Google Scholar 

  • Woerly S, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001;22(10):1095–111.

    Article  CAS  PubMed  Google Scholar 

  • Woerly S, et al. Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study. Biomacromolecules. 2008;9(9):2329–37.

    Article  CAS  PubMed  Google Scholar 

  • Wong DY, et al. Macro-architectures in spinal cord scaffold implants influence regeneration. J Neurotrauma. 2008;25(8):1027–37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu S, et al. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res. 2003;72(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, et al. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl). 2006;119(24):2101–7.

    Google Scholar 

  • Wu CY, et al. Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp. 2012;64:e3813.

    PubMed  Google Scholar 

  • Yan J, et al. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol. 2004;480(1):101–14.

    Article  PubMed  Google Scholar 

  • Yan J, et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 2007;4(2):e39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang CC, et al. Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE. 2008;3(10):e3336.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yano S, et al. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma. 2005;22(8):907–18.

    Article  PubMed  Google Scholar 

  • Yen BL, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  • Yohn DC, et al. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci. 2008;28(47):12409–18.

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73.

    Article  PubMed  Google Scholar 

  • Young HE, et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn. 1995;202(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE. 2010;5(7):e11853.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang SC, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129–33.

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, et al. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol. 2009;29(8):1283–92.

    Article  PubMed  Google Scholar 

  • Ziv Y, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA. 2006;103(35):13174–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, X., Yi, S., Gu, X. (2015). Stem Cells and Spinal Cord Regeneration. In: Zhao, R. (eds) Stem Cells: Basics and Clinical Translation. Translational Medicine Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7273-0_20

Download citation

Publish with us

Policies and ethics