Skip to main content

Stem Cell Therapy for Cartilage Defects

  • Chapter
  • First Online:
Stem Cells: Basics and Clinical Translation

Part of the book series: Translational Medicine Research ((TRAMERE,volume 1))

Abstract

Cartilaginous defects within the articular cartilage present a treatment problem within the orthopaedic community. In cases of established osteoarthritis affecting large joints, arthroplasty is a good, well-established and predictable option. It is though a step too far for smaller and discrete lesions. Currently, surgical options include autologous chondrocyte implantation, microfracture, osteochondral autologous transplantation and even osteochondral allograft plugs. Tissue engineering techniques may prove to be the answer to this problem. There is plenty of interest in stem cell manipulation to induce chondrogenesis. The areas of research focus on the differentiation of multipotent mesenchymal stem cells but also more recently on the use of induced pluripotent stem cells. Furthermore, augmentation of repair can be facilitated by endogenous stimulants to these cells such as growth factors, gene therapy and scaffolds to maintain an optimum microenvironment. Endogenous stimulants aside, it does appear that exogenous methods of stimulation such as ultrasound and magnetic field applications can further augment and improve the reparative process. The aim of this chapter is to define the problem faced by the medical world due to the macro- and microscopic structure of cartilage and present data and reports showing the advances made in this field. The final section focuses on the current state of play surrounding the translation of these techniques to human subjects, presenting the up-to-date studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford JW, Cole BJ. Cartilage restoration, part I: basic science, historical perspective, patient evaluation and treatment options. Am J Sports Med. 2005;33:295–306.

    Article  PubMed  Google Scholar 

  • Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund O, Engebretsen L. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32:211–5.

    Article  PubMed  Google Scholar 

  • Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocytes-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–7.

    Google Scholar 

  • Fox AJS, Bedi A, Rodeo SA. The basic science of articular cartilage. Structure, composition and function. Sports Health. 2009;1(6):461–8.

    Article  Google Scholar 

  • Greco F, Specchia N, Falciglia F, Toesca A, Nori S. Ultrastructural analysis of the adaptation of articular cartilage to mechanical stimulation. Ital J Orthop Traumatol. 1992;18(3):311–21.

    CAS  PubMed  Google Scholar 

  • Julkunen P, Wilson W, Jurvelin JS, Korhonen RK. Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading. Med Biol Eng Comput. 2009;47(12):1281–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan WS, Malik AA, Hardingham TE. Stem cell applications and tissue engineering approaches in surgical practice. J Perioper Pract. 2009;19(4):130–5.

    PubMed  Google Scholar 

  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

    Article  CAS  PubMed  Google Scholar 

  • Malik A, Khan WS. Stem cell applications and tissue engineering approaches in orthopaedic surgery and musculoskeletal medicine. Curr Stem Cell Res Ther. 2011.

    Google Scholar 

  • Niemeyer P, Salzmann G, Schmal H, Mayr H, Sudkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. 2012;20(9):1696–703.

    Article  PubMed  Google Scholar 

  • Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair–translational data and clinical evidence. Eur Cell Mater. 2013;25:299–316.

    CAS  PubMed  Google Scholar 

  • Plopper G. The extracellular matrix and cell adhesion. In: Lewin B, Cassimeris L, Lingappa V, Plopper G, editors. Cells; 2007.

    Google Scholar 

  • Raghunath J, Salacinski HJ, Sales KM, Butler PE, Seifalian AM. Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol. 2005;16(5):503–9.

    Article  CAS  PubMed  Google Scholar 

  • Sanghvi D, Munshi M, Pardiwala D. Imaging of cartilage repair procedures. Indian J Radiol Imaging. 2014;24(3):249–53.

    Article  PubMed Central  PubMed  Google Scholar 

Scaffolds

  • Alves da Silva ML, Martins A, Costa-Pinto AR, Correlo VM, Sol P, Bhattacharya M, Faria S, Reis RL, Neves NM. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-basedscaffolds using a flow-perfusion bioreactor. J Tissue Eng Regen Med. 2011;5(9):722–32.

    Article  CAS  PubMed  Google Scholar 

  • Susmita Bose, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  Google Scholar 

  • Chen WC, Wei YH, Chu IM, Yao CL. Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds. J Tissue Eng Regen Med. 2013;7(8):665–72.

    Article  CAS  PubMed  Google Scholar 

  • Childs A, Hemraz UD, Castro NJ, Fenniri H, Zhang LG. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater. 2013;8(6):065003.

    Article  PubMed  Google Scholar 

  • Diederichs S, Baral K, Tanner M, Richter W. Interplay between local versus soluble transforming growth factor-beta and fibrin scaffolds: role of cells and impact on human mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2012;18(11–12):1140–50.

    Article  CAS  PubMed  Google Scholar 

  • García Cruz DM, Salmerón-Sánchez M, Gómez-Ribelles JL. Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds. J Biomed Mater Res A. 2012;100(9):2330–41.

    Google Scholar 

  • Hidalgo IA, Sojot F, Arvelo F, Sabino MA. Functional electrospun poly (lactic acid) scaffolds for biomedical applications: experimental conditions, degradation and biocompatibility study. Mol Cell Biomech. 2013;10(2):85–105.

    PubMed  Google Scholar 

  • Khamdemhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am. 2009;300(5):64–71.

    Article  Google Scholar 

  • Klangjorhor J, Nimkingratana P, Settakorn J, Pruksakorn D, Leerapun T, Arpornchayanon O, Rojanasthien S, Kongtawelert P, Pothacharoen P. Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. J Orthop Surg Res. 2012;7:40.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li B, Yang J, Ma L, Li F, Tu Z, Gao C. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. J Biomed Mater Res A. 2013;101(11):3097–108.

    PubMed  Google Scholar 

  • Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater. 2012;11:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Yang HJ, Woo DG, Yang HN, Na K, Park KH. Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. J Biomed Mater Res A. 2010;92(2):806–16.

    PubMed  Google Scholar 

  • Park SH, Choi BH, Park SR, Min BH. Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro. Tissue Eng Part A. 2011;17(9–10):1277–86.

    Article  CAS  PubMed  Google Scholar 

  • Pruksakorn D, Khamwaen N, Pothacharoen P, Arpornchayanon O, Rojanasthien S, Kongtawelert P. Chondrogenic properties of primary human chondrocytes culture in hyaluronic acid treated gelatin scaffold. J Med Assoc Thai. 2009;92(4):483–90.

    PubMed  Google Scholar 

  • Son YJ, Yoon IS, Sung JH, Cho HJ, Chung SJ, Shim CK, Kim DD. Porous hyaluronic acid/sodium alginate composite scaffolds for human adipose-derived stem cells delivery. Int J Biol Macromol. 2013;61:175–81.

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 2012;33(15):3835–45.

    Google Scholar 

  • Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Felimban R, Traianedes K, Moulton SE, Wallace GG, Chung J, Quigley A, Choong PF, Myers DE. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS ONE 2014;9(6).

    Google Scholar 

  • Zhang L, Yuan T, Guo L, Zhang X. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2012;100(10):2717–25.

    Article  PubMed  Google Scholar 

  • Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013a;9(7):7236–47.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang Y, Yan S, Gong L, Wang J, Chen X, Cui L, Yin J. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater. 2013b;9(7):7276–88.

    Article  CAS  PubMed  Google Scholar 

Growth Factors

  • Almeida HV, Liu Y, Cunniffe GM, Mulhall KJ, Matsiko A, Buckley CT, O’Brien FJ, Kelly DJ. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 2014 (pii: S1742-7061(14)00242-6).

    Google Scholar 

  • Amin HD, Brady MA, St-Pierre JP, Stevens MM, Overby DR, Ethier CR. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field. Tissue Eng Part A. 2014;20(11–12):1612–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G, Freed LE. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 2002;8(1):73–84.

    Google Scholar 

  • Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92(Suppl 2):2–11.

    Article  PubMed  Google Scholar 

  • Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys. 2014 (pii: S0003-9861(14)00254-9; Epub ahead of print).

    Google Scholar 

  • Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, Park SR. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymalstem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs. 2013;37(7):648–55.

    Article  CAS  PubMed  Google Scholar 

  • de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury. 2010;41(11):1172–7.

    Article  PubMed  Google Scholar 

  • Elsler S, Schetting S, Schmitt G, Kohn D, Madry H, Cucchiarini M. Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. J Gene Med. 2012;14(7):501–11.

    Article  CAS  PubMed  Google Scholar 

  • Ertan AB, Yılgor P, Bayyurt B, CalıkoÄŸlu AC, Kaspar C, Kök FN, Kose GT, Hasirci V. Effect of double growth factor release on cartilage tissue engineering. J Tissue Eng Regen Med. 2013;7(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  • Freed LE. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun. 2001;286:909–15.

    Article  PubMed  Google Scholar 

  • Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.

    Google Scholar 

  • Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41(11):1196–203.

    Article  PubMed  Google Scholar 

  • Haag J, Gebhard PM, Aigner T. SOX gene expression in human osteoarthritic cartilage. Pathobiology. 2008;75:195–9.

    Article  CAS  PubMed  Google Scholar 

  • Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, El Shewy MT, Azzam A, Abdel Aziz MT. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1(4):253–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haupt JL, Frisbie DD, McIlwraith CW, Robbins PD, Ghivizzani S, Evans CH, et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res. 2005;23:118–26.

    Article  CAS  PubMed  Google Scholar 

  • Hidaka C, Goodrich LR, Chen C-T, Warren RF, Crystal RG, Nixon AJ. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res. 2003;21(4):573–83.

    Article  CAS  PubMed  Google Scholar 

  • Kafienah W, Al-Fayez F, Hollander AP, Barker MD. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach. Arthritis Rheum. 2003;48:709–18.

    Article  CAS  PubMed  Google Scholar 

  • Kamei G, Kobayashi T, Ohkawa S, Kongcharoensombat W, Adachi N, Takazawa K, Shibuya H, Deie M, Hattori K, Goldberg JL, Ochi M. Articular cartilage repair with magnetic mesenchymal stem cells. Am J Sports Med. 2013;41(6):1255–6.

    Article  PubMed  Google Scholar 

  • Kaps C, Bramlage C, Smolian H, Haisch A, Ungethüm U, Burmester GR, Sittinger M, Gross G, Häupl T. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum. 2002;46(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  • Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thai. 2011;94(3):395–400.

    PubMed  Google Scholar 

  • Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med. 2006;8:100–11.

    Article  CAS  PubMed  Google Scholar 

  • Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28.

    Article  CAS  PubMed  Google Scholar 

  • Kellner K, Schulz MB, Göpferich A, Blunk T. Insulin in tissue engineering of cartilage: a potential model system for growth factor application. J Drug Target. 2001;9(6):439–48.

    Google Scholar 

  • Kim SH, Kim S, Evans CH, Ghivizzani SC, Oligino T, Robbins PD. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol. 2001;166:3499–505.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JM, Park KH. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials. 2011;32(1):268–78.

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Yamaoka K, Sonomoto K, Fukuyo S, Oshita K, Okada Y, Tanaka Y. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8(11):e7946.

    Google Scholar 

  • Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K. Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev. 2010;19(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  • Lai CH, Chen SC, Chiu LH, Yang CB, Tsai YH, Zuo CS, Chang WH, Lai WF. Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation. Ultrasound Med Biol. 2010;36(6):1022–33.

    Article  PubMed  Google Scholar 

  • Lee HJ, Choi BH, Min BH, Park SR. Low-intensity ultrasound inhibits apoptosis and enhances viability of human mesenchymal stem cells in three-dimensional alginate culture during chondrogenic differentiation. Tissue Eng. 2007;13(5):1049–57.

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, Wang VT, Chan YH, Hui JH. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid–a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore. 2012;41(11):511–7.

    PubMed  Google Scholar 

  • Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today. 2005;75:200–12.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tew SR, Russell AM, Gonzalez KR, Hardingham TE, Hawkins RE. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng. 2004;10(3–4):575–84.

    Article  CAS  PubMed  Google Scholar 

  • Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croatian Med J. 2011;52(3):245–61.

    Article  Google Scholar 

  • Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013;25:229–47.

    Google Scholar 

  • Manning K, Rachakonda PS, Rai MF, Schmidt MF. Co-expression of insulin-like growth factor-1 and interleukin-4 in an in vitro inflammatory model. Cytokine. 2010;50:297–305.

    Article  CAS  PubMed  Google Scholar 

  • Mardani M, Kabiri A, Esfandiari E, Esmaeili A, Pourazar A, Ansar M, Hashemibeni B. The effect of platelet rich plasma on chondrogenic differentiation of human adipose derived stem cells in transwell culture. Iran J Basic Med Sci. 2013;16(11):1163–9.

    PubMed Central  PubMed  Google Scholar 

  • Matsumoto T, Okabe T, Ikawa T, Iida T, Yasuda H, Nakamura H, Wakitani S. Articular cartilage repair with autologous bone marrow mesenchymal cells. J Cell Physiol. 2010;225(2):291–5.

    Google Scholar 

  • Mayer-Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, Jansson V, Müller PE. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics. 2011;32(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  • Morales TI. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures. Arch Biochem Biophys. 1991;286(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama M, Deie M, Kanaya A, Nishimori M, Miyamoto A, Yanada S, Adachi N, Ochi M. In vitro cartilage formation using TGF-beta-immobilized magnetic beads and mesenchymalstem cell-magnetic bead complexes under magnetic field conditions. J Biomed Mater Res A. 2010;92(1):196–204.

    Article  PubMed  Google Scholar 

  • Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  • Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentís J, Sánchez A, García-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage. 2005;13(6):527–36.

    Article  CAS  PubMed  Google Scholar 

  • Park SR, Choi BH, Min BH. Low-intensity ultrasound (LIUS) as an innovative tool for chondrogenesis of mesenchymal stem cells (MSCs). Organogenesis. 2007;3(2):74–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cellsencapsulated in injectable hydrogel composite. J Biomed Mater Res A. 2009;88(4):889–97.

    Article  PubMed  Google Scholar 

  • Pastides P, Chimutengwende-Gordon M, Maffulli N, Khan W. Stem cell therapy for human cartilage defects: a systematic review. Osteoarthritis Cartilage. 2013;21(5):646–54.

    Article  CAS  PubMed  Google Scholar 

  • Rosa RG, Joazeiro PP, Bianco J, Kunz M, Weber JF, Waldman SD. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. PLoS ONE. 2014;9(8):e10517.

    Article  Google Scholar 

  • Smeriglio P, Lai JH, Dhulipala L, Behn AW, Goodman SB, Smith RL, Maloney W, Yang F, Bhutani N. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in 3D biomimetic hydrogels. Tissue Eng Part A. 2014 (Epub ahead of print).

    Google Scholar 

  • Sumer H, Jones KL, Liu J, Heffernan C, Tat PA, Upton KR, Verma PJ. Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev. 2010;19(2):239–46.

    Google Scholar 

  • Sun Y, Feng Y, Zhang C, Chen S, Cheng X. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthopaed. 2010;34:589–97.

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  • Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage. 2005;13(4):278–86.

    Article  CAS  PubMed  Google Scholar 

  • Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1(1):74–9.

    Article  PubMed  Google Scholar 

  • Wang H, Li Y, Chen J, Wang X, Zhao F, Cao S. Chondrogenesis of bone marrow mesenchymal stem cells induced by transforming growth factor beta3 gene in Diannan small-ear pigs. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(2):149–54.

    PubMed  Google Scholar 

  • Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8.

    Article  PubMed  Google Scholar 

  • Zhang HG, Xie J, Yang P, Wang Y, Xu L, Liu D, Hsu HC, Zhou T, Edwards CK 3rd, Mountz JD. Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis. Hum Gene Ther. 2000;11:2431–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Pastides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pastides, P.S., Khan, W.S. (2015). Stem Cell Therapy for Cartilage Defects. In: Zhao, R. (eds) Stem Cells: Basics and Clinical Translation. Translational Medicine Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7273-0_17

Download citation

Publish with us

Policies and ethics