Skip to main content

Laser-Induced Cavitation and Photoacoustic Cavitation

  • Chapter
  • First Online:

Abstract

As a physical phenomenon, cavitation can be induced by several factors, including heating, acoustic pressure, and high-energy light, for which a focused laser has been widely used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achenbach JD, Komsky IN, Lee Y, Angel YC. Self-calibrating ultrasonic technique for crack depth measurement. J Nondestr Eval. 1992;11(2):103–8.

    Article  Google Scholar 

  • Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids. 2001;13(10):2805.

    Article  CAS  Google Scholar 

  • Akhatov I, Vakhitova N, Topolnikov A, Zakirov K, Wolfrum B, Kurz T, Lindau O, Mettin R, Lauterborn W. Dynamics of laser-induced cavitation bubbles. Exp Thermal Fluid Sci. 2002;26(6):731–7.

    Article  CAS  Google Scholar 

  • Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science. 2002;297(5584):1160–3.

    Article  CAS  PubMed  Google Scholar 

  • Byun KT, Kwak HY. A model of laser-induced cavitation. Jpn J Appl Phys. 2004;43(2R):621.

    Article  CAS  Google Scholar 

  • Chen WS, Lafon C, Matula TJ, Vaezy S, Crum LA. Mechanisms of lesion formation in high intensity focused ultrasound therapy. Acoust Res Lett Online. 2003;4(2):41–6.

    Article  Google Scholar 

  • Chiou P-Y, Wu T-H, Park S, Chen Y Pulse laser driven ultrafast micro and nanofluidics system. In: SPIE NanoScience + Engineering, 2010. International Society for Optics and Photonics, pp. 77590Z-77590Z–77598.

    Google Scholar 

  • Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B. Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci. 2003;100(20):11350–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coussios C, Farny C, Ter Haar G, Roy R. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperth. 2007;23(2):105–20.

    Article  CAS  Google Scholar 

  • Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, Zutshi R, Doinikov A, Ferrara KW. Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging. 2006;5(3):160.

    PubMed Central  PubMed  Google Scholar 

  • Delale CF, Hruby J, Marsik F. Homogeneous bubble nucleation in liquids: the classical theory revisited. J Chem Phys. 2003;118(2):792–806.

    Article  CAS  Google Scholar 

  • Dijkink R, SeL Gac, Nijhuis E, Avd Berg, Ia Vermes, Ae Poot, Ohl C-D. Controlled cavitation–cell interaction: trans-membrane transport and viability studies. Phys Med Biol. 2008;53(2):375.

    Article  PubMed  Google Scholar 

  • Dijkink R, Ohl CD. Laser-induced cavitation based micropump. Lab Chip. 2008;8(10):1676–81.

    Article  CAS  PubMed  Google Scholar 

  • Docchio F, Sacchi C, Marshall J. Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations. Lasers Ophthalmol. 1986;1:83–93.

    Google Scholar 

  • Farny CH, Holt RG, Roy RA. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. Ultrasound Med Biol. 2009;35(4):603–15.

    Article  PubMed  Google Scholar 

  • Farny CH, Wu T, Holt RG, Murray TW, Roy RA. Nucleating cavitation from laser-illuminated nano-particles. Acoust Res Lett Online. 2005;6(3):138–43.

    Article  Google Scholar 

  • Fry FJ, Sanghvi NT, Foster RS, Bihrle R, Hennige C. Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental. Ultrasound Med Biol. 1995;21(9):1227–37.

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa S, Akamatsu T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J Fluid Mech. 1980;97(03):481–512.

    Article  CAS  Google Scholar 

  • Gerold B, Kotopoulis S, McDougall C, McGloin D, Postema M, Prentice P. Laser-nucleated acoustic cavitation in focused ultrasound. Rev Sci Instrum. 2011;82(4):044902.

    Article  PubMed  Google Scholar 

  • Hall L. The origin of ultrasonic absorption in water. Phys Rev. 1948;73(7):775–81.

    Article  CAS  Google Scholar 

  • Hashimoto S, Werner D, Uwada T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol C. 2012;13(1):28–54.

    Article  CAS  Google Scholar 

  • Hellman AN, Rau KR, Yoon HH, Bae S, Palmer JF, Phillips KS, Allbritton NL, Venugopalan V. Laser-induced mixing in microfluidic channels. Anal Chem. 2007;79(12):4484–92.

    Article  CAS  PubMed  Google Scholar 

  • Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol. 2001;27(10):1399–412.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  PubMed  Google Scholar 

  • Ju H, Roy RA, Murray TW. Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed Optics Express. 2013;4(1):66–76.

    Article  CAS  Google Scholar 

  • Kashchiev D. Thermodynamically consistent description of the work to form a nucleus of any size. J Chem Phys. 2003;118(4):1837–51.

    Article  CAS  Google Scholar 

  • Kennedy PK. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE J Quantum Electron. 1995;31(12):2241–9.

    Article  CAS  Google Scholar 

  • Klibanov AL. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem. 2005;16(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  • Krasovitski B, Kislev H, Kimmel E. Modeling photothermal and acoustical induced microbubble generation and growth. Ultrasonics. 2007;47(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  • Kusaka I. A scaling function of nucleation barrier based on the diffuse interface theory. J Chem Phys. 2003;119(3):1808–12.

    Article  CAS  Google Scholar 

  • Lapotko D. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt Express. 2009;17(4):2538–56.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Gojani AB, T-h Han, Yoh JJ. Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadowgraph. J Visual. 2011;14(4):331–7.

    Article  Google Scholar 

  • Lim KY, Quinto-Su PA, Klaseboer E, Khoo BC, Venugopalan V, Ohl CD. Nonspherical laser-induced cavitation bubbles. Phys Rev E. 2010;81(1):016308.

    Article  Google Scholar 

  • Lubatschowski H, Maatz G, Heisterkamp A, Hetzel U, Drommer W, Welling H, Ertmer W. Application of ultrashort laser pulses for intrastromal refractive surgery. Graefe’s Arch Clin Exp Ophthalmol. 2000;238(1):33–9.

    Article  CAS  Google Scholar 

  • Lukianova-Hleb E, Hanna E, Hafner J, Lapotko D. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology. 2010;21(8):085102.

    Article  CAS  Google Scholar 

  • Lukianova-Hleb EY, Mrochek AG, Lapotko DO. Method for disruption and re-canalization of atherosclerotic plaques in coronary vessels with photothermal bubbles generated around gold nanoparticles. Lasers Surg Med. 2009;41(3):240–7.

    Article  PubMed  Google Scholar 

  • Maatz G, Heisterkamp A, Lubatschowski H, Barcikowski S, Fallnich C, Welling H, Ertmer W. Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery. J Opt A Pure Appl Opt. 2000;2(1):59.

    Article  Google Scholar 

  • McLaughlan JR, Roy RA, Ju H, Murray TW. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt Lett. 2010;35(13):2127–9.

    Article  PubMed  Google Scholar 

  • Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J Quantum Electron. 1999;35(8):1156–67.

    Article  CAS  Google Scholar 

  • Plesset MS, Prosperetti A. Bubble dynamics and cavitation. Annu Rev Fluid Mech. 1977;9(1):145–85.

    Article  CAS  Google Scholar 

  • Quinto-Su PA, Ohl CD. Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J Fluid Mech. 2009;633:425–35.

    Article  CAS  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009;138(3):268–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rink K, Delacretaz G, Salathe R. Fragmentation process induced by nanosecond laser pulses. Appl Phys Lett. 1992;61(22):2644–6.

    Article  CAS  Google Scholar 

  • Sacchi C. Laser-induced electric breakdown in water. J Opt Soc Am B. 1991;8(2):337–45.

    Article  CAS  Google Scholar 

  • Sasaki K, Nakano T, Soliman W, Takada N. Effect of pressurization on the dynamics of a cavitation bubble induced by liquid-phase laser ablation. Appl Phy Express. 2009;2(4):046501.

    Article  Google Scholar 

  • Schad KC, Hynynen K. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol. 2010;55(17):4933.

    Article  PubMed  Google Scholar 

  • Schrage RW. A theoretical study of interphase mass transfer. Columbia: Columbia University Press; 1953.

    Google Scholar 

  • Talanquer V. A new phenomenological approach to gas–liquid nucleation based on the scaling properties of the critical nucleus. J Chem Phy. 1997;106(23).

    Google Scholar 

  • Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am. 1996;100(1):148–65.

    Article  Google Scholar 

  • Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B. 2005;81(8):1015–47.

    Article  CAS  Google Scholar 

  • Williams F, Varma S, Hillenius S. Liquid water as a lone-pair amorphous semiconductor. J Chem Phys. 1976;64(4):1549–54.

    Article  CAS  Google Scholar 

  • Wu T, Farny CH, Roy RA, Holt R. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress. J Acoust Soc Am. 2011;130(5):3252–63.

    Article  CAS  PubMed  Google Scholar 

  • Zohdy MJ, Tse C, Ye JY, O’Donnell M. Optical and acoustic detection of laser-generated microbubbles in single cells. IEEE Trans Ultrasonics Ferroelectr Freq Control. 2006;53(1):117–25.

    Article  Google Scholar 

  • Zwaan E, Le Gac S, Tsuji K, Ohl CD. Controlled cavitation in microfluidic systems. Phys Rev Lett. 2007;98(25):254501.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxi Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feng, Y., Qin, D., Wan, M. (2015). Laser-Induced Cavitation and Photoacoustic Cavitation. In: Wan, M., Feng, Y., Haar, G. (eds) Cavitation in Biomedicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7255-6_8

Download citation

Publish with us

Policies and ethics