Skip to main content

Cavitation-Enhanced Mechanical Effects and Applications

  • Chapter
  • First Online:
Cavitation in Biomedicine

Abstract

In a broad sense, acoustic cavitation refers to ultrasonically induced bubble activity occurring in a biological material. If gaseous microbubbles, including cavitation bubbles or encapsulated contrast agent bubbles, are placed in a sound field, they might be powerful actuators, and their response to ultrasonic irradiation may involve growing to a resonant size and undergoing oscillatory action. A series of secondary motions can result from the oscillation of microbubbles, such as acoustic streaming, shock waves, and liquid microjets, thereby producing mechanical effects on surrounding tissue or cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alesh I, Kayali F, Stein PD. Catheter-directed thrombolysis (intrathrombus injection) in treatment of deep venous thrombosis: a systematic review. Cathet Cardiovasc Interv. 2007;70(1):145–50.

    Article  Google Scholar 

  • Arvanitis CD, Bazan-Peregrino M, Rifai B, Seymour LW, Coussios CC. Cavitation-enhanced extravasation for drug delivery. Ultrasound Med Biol. 2011;37(11):1838–52.

    Article  PubMed  Google Scholar 

  • Bailey M, Khokhlova V, Sapozhnikov O, Kargl S, Crum L. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust Phys. 2003;49(4):369–88.

    Article  Google Scholar 

  • Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997;23(6):953-959.

    Google Scholar 

  • Barnett S. Nonthermal issues: cavitation—its nature, detection and measurement. Ultrasound Med Biol. 1998;24:S11–21.

    Article  Google Scholar 

  • Bjarnason H, Kruse JR, Asinger DA, Nazarian GK, Dietz CA Jr, Caldwell MD, Key NS, Hirsch AT, Hunter DW. Iliofemoral deep venous thrombosis: safety and efficacy outcome during 5 years of catheter-directed thrombolytic therapy. J Vasc Interv Radiol. 1997;8(3):405–18.

    Article  CAS  PubMed  Google Scholar 

  • Brujan E-A. Shock wave emission from laser-induced cavitation bubbles in polymer solutions. Ultrasonics. 2008;48(5):423–6.

    Article  CAS  PubMed  Google Scholar 

  • Brujan EA. Cavitation in non-newtonian fluids. Berlin: Springer-Verlag; 2011.

    Book  Google Scholar 

  • Brujan EA, Ikeda T, Matsumoto Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol. 2005;50(20):4797–809.

    Article  CAS  PubMed  Google Scholar 

  • Brujan EA, Nahen K, Schmidt P, Vogel A. Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J Fluid Mech. 2001;433:283–314.

    Article  CAS  Google Scholar 

  • Brujan EA, Ohl CD, Lauterborn W, Philipp A. Dynamics of laser-induced cavitation bubbles in polymer solutions. Acustica. 1996;82:423–30.

    CAS  Google Scholar 

  • Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW. Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am. 2007;122(2):1191–200.

    Article  CAS  PubMed  Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck M-P, Fenart L. Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650–61.

    Article  CAS  PubMed  Google Scholar 

  • Chang PP, Chen W-S, Mourad PD, Poliachik SL, Crum LA. Thresholds for inertial cavitation in albunex suspensions under pulsed ultrasound conditions. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Brayman AA, Evan AP, Matula TJ. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med Biol. 2012;38(12):2151–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen H, Brayman AA, Kreider W, Bailey MR, Matula TJ. Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound Med Biol. 2011a;37(12):2139–48.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett. 2011b;106(3):034301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Coakley WT, Nyborg W. Cavitation; dynamics of gas bubbles; applications. In: Fry FJ (ed) Ultrasound: its applications in medicine and biology. Amsterdam: Elsevier Scientific Publishing Co.; 1978. pp. 77–159.

    Google Scholar 

  • Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics. 2010;50(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  • Davidson B, Riley N. Cavitation microstreaming. J Sound Vib 1971;15(2):217–233.

    Google Scholar 

  • Dijkink R, Ohl C-D. Measurement of cavitation induced wall shear stress. Appl Phys Lett. 2008;93(25):254107.

    Article  Google Scholar 

  • Doinikov AA, Bouakaz A. Acoustic microstreaming around a gas bubble. J Acoust Soc Am. 2010a;127(2):703–9.

    Article  PubMed  Google Scholar 

  • Doinikov AA, Bouakaz A. Acoustic microstreaming around an encapsulated particle. J Acoust Soc Am. 2010b;127(3):1218–27.

    Article  PubMed  Google Scholar 

  • Doinikov AA, Bouakaz A. Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism for sonoporation. J Acoust Soc Am. 2010c;128(1):11–9.

    Article  PubMed  Google Scholar 

  • Doinikov AA, Bouakaz A. Effect of a distant rigid wall on microstreaming generated by an acoustically driven gas bubble. J Fluid Mech. 2014;742:425–45.

    Article  Google Scholar 

  • Duryea AP, Maxwell AD, Roberts WW, Xu Z, Hall TL, Cain CA. In vitro comminution of model renal calculi using histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(5):971–80.

    Article  PubMed  Google Scholar 

  • Eisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27(5):683–93.

    Article  CAS  PubMed  Google Scholar 

  • Elder SA. Cavitation microstreaming. J Acoust Soc Am. 1959;31:54–64.

    Article  Google Scholar 

  • Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. In: Yarmush ML, editor. Annual review of biomedical engineering, vol. 9. Palo Alto: Annual Reviews; 2007. p. 415–47.

    Google Scholar 

  • Frenkel V, Oberoi J, Stone MJ, Park M, Deng C, Wood BJ, Neeman Z, Horne M III, Li KC. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model 1. Radiology. 2006;239(1):86–93.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gormley G, Wu J. Observation of acoustic streaming near Albunex® spheres. J Acoust Soc Am. 1998;104(5):3115–8.

    Article  Google Scholar 

  • Gutt CN, Oniu T, Wolkener F, Mehrabi A, Mistry S, Büchler MW. Prophylaxis and treatment of deep vein thrombosis in general surgery. Am J Surg. 2005;189(1):14–22.

    Article  PubMed  Google Scholar 

  • HT. Ballantine Jr, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J Neurosurg. 1960;17:858–876.

    Google Scholar 

  • Harper JD, Dunmire B, Wang Y-N, Simon JC, Liggitt D, Paun M, Cunitz BW, Starr F, Bailey MR, Penniston KL. Preclinical safety and effectiveness studies of ultrasonic propulsion of kidney stones. Urology. 2014;84(2):484–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hauptmann M, Struyf H, De Gendt S, Glorieux C, Brems S. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields. J Appl Phys. 2013;113(18):184902.

    Article  Google Scholar 

  • Hynynen K. Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev. 2008;60(10):1209–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikeda T, Yoshizawa S, Tosaki M, Allen JS, Takagi S, Ohta N, Kitamura T, Matsumoto Y. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol. 2006;32(9):1383–97.

    Article  PubMed  Google Scholar 

  • Kim HS, Patra A, Paxton BE, Khan J, Streiff MB. Catheter-directed thrombolysis with percutaneous rheolytic thrombectomy versus thrombolysis alone in upper and lower extremity deep vein thrombosis. Cardiovasc Intervent Radiol. 2006;29(6):1003–7.

    Article  PubMed  Google Scholar 

  • Kolb J, Nyborg WL. Small-scale acoustic streaming in liquids. J Acoust Soc Am. 1956;28(6):1237–42.

    Article  Google Scholar 

  • Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev. 2014;72:28–48.

    Article  CAS  PubMed  Google Scholar 

  • Krasovitski B, Kimmel E. Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(8):973–9.

    Article  PubMed  Google Scholar 

  • Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet. 2005;365(9465):1163–74.

    Article  PubMed  Google Scholar 

  • Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am. 1976;59(2):283–93.

    Article  Google Scholar 

  • Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech. 1975;72(02):391–9.

    Article  Google Scholar 

  • Lee T, Baac HW, Ok JG, Youn HS, Guo LJ. Controlled generation of single microbubble at solid surfaces by a nanosecond pressure pulse. Phys Rev Appl. 2014;2(2):024007.

    Article  Google Scholar 

  • Lewin PA, Bjørnø L. Acoustically induced shear stresses in the vicinity of microbubbles in tissue. J Acoust Soc Am. 1982;71(3):728–34.

    Article  Google Scholar 

  • Liu X, Wu J. Acoustic microstreaming around an isolated encapsulated microbubble. J Acoust Soc Am. 2009;125(3):1319–30.

    Article  PubMed  Google Scholar 

  • Liu Z, Gao S, Zhao Y, Li P, Liu J, Li P, Tan K, Xie F. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis. Ultrasound Med Biol. 2012;38(2):253–61.

    Article  PubMed  Google Scholar 

  • Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 2003;423(6936):153–6.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Allen JS, Yoshizawa S, Ikeda T, Kaneko Y. Medical ultrasound with microbubbles. Eur J Ultrasound. 2005;29(3):255–65.

    Google Scholar 

  • Matula T, Chen H. Micro/Manoparticles in ultrasound imaging and therapy. In: Yang X, editor Nanotechnology in modern medical imaging and interventions. Hauppauge: Nova Science; 2013. pp 143–164.

    Google Scholar 

  • Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy–histotripsy. Ultrasound Med Biol. 2009;35(12):1982–94.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, Bailey MR, Sorensen MD. Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J urol. 2015;193(1):338–44.

    Article  PubMed  Google Scholar 

  • Meairs S, Alonso A, Hennerici MG. Progress in sonothrombolysis for the treatment of stroke. Stroke. 2012;43(6):1706–10.

    Article  PubMed  Google Scholar 

  • Miller DL. Particle gathering and microstreaming near ultrasonically activated gas‐filled micropores. J Acoust Soc Am 1988;84(4):1378–1387.

    Google Scholar 

  • Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996;22(9):1131–54.

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Pislaru SV, Greenleaf JF. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Som cell mole genet 2002; 27 (1-6):115-134

    Google Scholar 

  • Minnaert M. XVI On musical air-bubbles and the sounds of running water. Lon Edinb Dublin Philos Mag J Sci 1933;16(104):235–248.

    Google Scholar 

  • Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  • Moll S. A clinical perspective of venous thromboembolism. Arterioscler Thromb Vasc Biol. 2008;28(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  • NCRP. Exposure criteria for medical diagnostic ultrasound II: criteria based on all known mechanisms (NCRP report 140). National Council on Radiation Protection and Measurements, Maryland; 2002.

    Google Scholar 

  • Nyborg WL. Acoustic streaming near a boundary. J Acoust Soc Am. 1958;30(4):329–39.

    Article  Google Scholar 

  • Nyborg WL. Ultrasonic microstreaming and related phenomena. Br J Cancer. 1982;45 Suppl V:156.

    Google Scholar 

  • Ohl C, Ikink R. Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett. 2003;90(21):214502.

    Article  CAS  PubMed  Google Scholar 

  • Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W. Bubble dynamics, shock waves and sonoluminescence. Philos Trans R Soc Lon Ser A: Math Phys Eng Sci. 1999;357(1751):269–94.

    Article  CAS  Google Scholar 

  • Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge, UK: Cambridge University Press; 2001.

    Book  Google Scholar 

  • Parsons JE, Cain CA, Abrams GD, Fowlkes JB. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol. 2006;32(1):115–29.

    Article  PubMed  Google Scholar 

  • Pecha R, Gompf B. Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett. 2000;84(6):1328.

    Article  CAS  PubMed  Google Scholar 

  • Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. J Fluid Mech. 1998;361:75–116.

    Article  CAS  Google Scholar 

  • Plesset M, Chapman R. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech. 1971;47:283–90.

    Article  Google Scholar 

  • Postema M, Van Wamel A, Lancée CT, De Jong N. Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol. 2004;30(6):827–40.

    Article  PubMed  Google Scholar 

  • Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nat Phys. 2005;1(2):107–10.

    Article  CAS  Google Scholar 

  • Prosperetti A. A new mechanism for sonoluminescence. J Acoust Soc Am 1997;101(4):2003–2007.

    Google Scholar 

  • Qiao Y, Yin H, Li Z, Wan M. Cavitation distribution within large phantom vessel and mechanical damage formed on surrounding vessel wall. Ultrason Sonochem. 2013;20(6):1376–83.

    Article  CAS  PubMed  Google Scholar 

  • Rassweiler JJ, Knoll T, Köhrmann K-U, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci. 1917;34(200):94–8.

    Article  Google Scholar 

  • Roberts WW, Hall TL, Ives K, Wolf JS Jr, Fowlkes JB, Cain CA. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175(2):734–8.

    Article  PubMed  Google Scholar 

  • Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science. 1970;169(3948):869–71.

    Article  CAS  PubMed  Google Scholar 

  • Rosenschein U, Furman V, Kerner E, Fabian I, Bernheim J, Eshel Y. Ultrasound imaging-guided noninvasive ultrasound thrombolysis preclinical results. Circulation. 2000;102(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov OA, Khokhlova VA, Bailey M, Williams JC Jr, McAteer JA, Cleveland RO, Crum LA. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am. 2002;112(3 pt 1):1183–95.

    Article  PubMed  Google Scholar 

  • Shaw GJ, Meunier JM, Huang S-L, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res. 2009;124(3):306–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation. 1998;98(4):290–3.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation. 1995;92(5):1148–50.

    Article  CAS  PubMed  Google Scholar 

  • Tho P, Manasseh R, Ooi A. Cavitation microstreaming patterns in single and multiple bubble systems. J Fluid Mech. 2007;576:191–233.

    Article  Google Scholar 

  • Tran BC, Seo J, Hall TL, Xu Z, Ives K, Fowlkes JB, Cain CA. In vivo comparison of multiple pulse and CW strategies for microbubble-enhanced ultrasound therapy. In: IEEE symposium on ultrasonics. IEEE; 2003. pp. 909–912.

    Google Scholar 

  • Tung Y-S, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am. 2011;130(5):3059–67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech. 1989;206:299–338.

    Article  Google Scholar 

  • Vos HJ, Dollet B, Versluis M, De Jong N. Nonspherical shape oscillations of coated microbubbles in contact with a wall. Ultrasound Med Biol. 2011;37(6):935–48.

    Article  PubMed  Google Scholar 

  • Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics. 2008;48(4):279–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westermark S, Wiksell H, Elmqvist H, Hultenby K, Berglund H. Effect of externally applied focused acoustic energy on clot disruption in vitro. Clin Sci. 1999;97:67–71.

    Article  CAS  PubMed  Google Scholar 

  • Wu J. Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med Biol. 2002;28(1):125–9.

    Article  PubMed  Google Scholar 

  • Wu J, Du G. Streaming generated by a bubble in an ultrasound field. J Acoust Soc Am. 1997;101(4):1899–907.

    Article  CAS  Google Scholar 

  • Xu S, Zong Y, Feng Y, Liu R, Liu X, Hu Y, Han S, Wan M. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. Ultrason Sonochem. 2015;22:160–6.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Fowlkes JB, Ludomirsky A, Cain CA. Investigation of intensity thresholds for ultrasound tissue erosion. Ultrasound Med Biol. 2005a;31(12):1673–82.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Fowlkes JB, Rothman ED, Levin AM, Cain CA. Controlled ultrasound tissue erosion: the role of dynamic interaction between insonation and microbubble activity. J Acoust Soc Am. 2005b;117(1):424–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Hall TL, Fowlkes JB, Cain CA. Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion. J Acoust Soc Am. 2007;121(4):2421–30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(6):726–36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys. 2008;128(18):184705.

    Article  PubMed  Google Scholar 

  • Yoshizawa S, Ikeda T, Ito A, Ota R, Takagi S, Matsumoto Y. High intensity focused ultrasound lithotripsy with cavitating microbubbles. Med Biol Eng Compu. 2009;47(8):851–60.

    Article  Google Scholar 

  • Zhong W, Sit WH, Wan JM, Yu AC. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. Ultrasound Med Biol. 2011;37(12):2149–59.

    Article  PubMed  Google Scholar 

  • Zhou Y, Cocks FH, Preminger GM, Zhong P. Innovations in shock wave lithotripsy technology: updates in experimental studies. J Urol. 2004;172(5):1892–8.

    Article  PubMed  Google Scholar 

  • Zhu S, Cocks FH, Preminger GM, Zhong P. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol. 2002;28(5):661–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxi Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zong, Y., Xu, S., Matula, T., Wan, M. (2015). Cavitation-Enhanced Mechanical Effects and Applications. In: Wan, M., Feng, Y., Haar, G. (eds) Cavitation in Biomedicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7255-6_5

Download citation

Publish with us

Policies and ethics