Skip to main content

Cavitation Mapping

  • Chapter
  • First Online:
Cavitation in Biomedicine

Abstract

When the acoustic pressure of ultrasound propagating in a medium is higher than a threshold value, one or more gas pockets (bubbles) can form Apfel (Ultrasonics 22:167–173, 1984). During ultrasound exposure, these gas bubbles may grow, oscillate, and collapse, during which they are called “active” cavitation bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyratne UR, Petropulu AP, Reid JM. Higher-order spectra based deconvolution of ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control. 1995;42:1064–75.

    Article  Google Scholar 

  • Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids. 2001;13:2805–19.

    Article  CAS  Google Scholar 

  • Ammi AY, Cleveland RO, Mamou J, Wang GI, Bridal SL, O’Brien WD. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53:126–36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Apfel R. Acoustic cavitation inception. Ultrasonics. 1984;22:167–73.

    Article  Google Scholar 

  • Asl BM, Mahloojifar A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:1923–31.

    Article  PubMed  Google Scholar 

  • Arvanitis CD, Clement G, McDannold N. Transcranial passive cavitation mapping with a linear array: a simulation study with clinical datasets. J Acoust Soc Am. 2014;135:2210.

    Article  Google Scholar 

  • Atchley A, Frizzell L, Apfel R, Holland C, Madanshetty S, Roy R. Thresholds for cavitation produced in water by pulsed ultrasound. Ultrasonics. 1988;26:280–5.

    Article  CAS  PubMed  Google Scholar 

  • Barnett S. Nonthermal issues: cavitation– its nature, detection and measurement. Ultrasound Med Biol. 1998;24:S11–21.

    Article  Google Scholar 

  • Blackstock DT. Fundamentals of physical acoustics. New York: Wiley; 2000.

    Google Scholar 

  • Brenner MP, Hilgenfeldt S, Lohse D. Single-bubble sonoluminescence. Rev Mod Phys. 2002;74:425–84.

    Article  CAS  Google Scholar 

  • Cao H, Wan MX, Qiao YZ, Zhang SY, Li RX. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Ultrason Sonochem. 2012;19:257–63.

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yin H, Qiao YZ, Zhang SY, Wan MX. Sonochemiluminescence observation and acoustic detection of cavitation induced by pulsed HIFU at a tissue–fluid interface. Ultrason Sonochem. 2013;20:1370–5.

    Article  CAS  PubMed  Google Scholar 

  • Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE. 1969;57:1408–18.

    Article  Google Scholar 

  • Chambers L. The emission of visible light from pure liquids during acoustic excitation. Phys Rev. 1936;49:881.

    Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett. 2011;106:034301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen H, Li XJ, Wan MX. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound. Ultrasonics. 2006a;44:e427–9.

    Article  PubMed  Google Scholar 

  • Chen H, Li XJ, Wan MX. Spatial–temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Ultrason Sonochem. 2006b;13:480–6.

    Article  PubMed  Google Scholar 

  • Chen H, Li XJ, Wan MX, Wang SP. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields. Ultrasonics. 2009;49:289–92.

    Article  PubMed  Google Scholar 

  • Chen W-S, Brayman AA, Matula TJ, Crum LA. Inertial cavitation dose and hemolysis produced in vitro with or without Optison@. Ultrasound Med Biol. 2003a;29:725–37.

    Article  PubMed  Google Scholar 

  • Chen W-S, Brayman AA, Matula TJ, Crum LA, Miller MW. The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol. 2003b;29:739–48.

    Article  PubMed  Google Scholar 

  • Chen W-S, Matula TJ, Crum LA. The disappearance of ultrasound contrast bubbles: observations of bubble dissolution and cavitation nucleation. Ultrasound Med Biol. 2002;28:793–803.

    Article  PubMed  Google Scholar 

  • Choi JJ, Coussios C-C. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure. J Acoust Soc Am. 2012;132:3538–49.

    Article  PubMed  Google Scholar 

  • Chomas JE, Dayton P, May D, Ferrara K. Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt. 2001;6:141–50.

    Article  CAS  PubMed  Google Scholar 

  • Cole RH. Underwater explosions. New York: Dover Publications; 1965.

    Google Scholar 

  • Coleman AJ, Saunders JE, Crum LA, Dyson M. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol. 1987;13:69–76.

    Article  CAS  PubMed  Google Scholar 

  • Collin J, Coviello C, Lyka E. Real-time three-dimensional passive cavitation detection for clinical high intensity focused ultrasound systems. J Acoust Soc Am. 2013;133:3263.

    Article  Google Scholar 

  • Cox H, Zeskind RM, Owen MM. Robust adaptive beamforming. IEEE Trans Acoust Speech Sign Process. 1987;35:1365–76.

    Article  Google Scholar 

  • Crum LA. Acoustic cavitation. In: Proceeding of 1982 IEEE ultrasonics symposium. New York: IEEE; 1982. pp 1–11.

    Google Scholar 

  • Crum LA, Roy RA, Dinno MA, Church CC, Apfel RE, Holland CK, Madanshetty SI. Acoustic cavitation produced by microsecond pulses of ultrasound: a discussion of some selected results. J Acoust Soc Am. 1992;91:1113–9.

    Article  CAS  PubMed  Google Scholar 

  • Deng CX, Xu Q, Apfel RE, Holland CK. In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound Med Biol. 1996;22:939–48.

    Article  CAS  PubMed  Google Scholar 

  • Ding T, Zhang SY, Fu QY, Xu ZA, Wan MX. Ultrasound line-by-line scanning method of spatial–temporal active cavitation mapping for high-intensity focused ultrasound. Ultrasonics. 2013;54:147–55.

    Article  PubMed  Google Scholar 

  • Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol. 2000;26:1153–60.

    Article  CAS  PubMed  Google Scholar 

  • Farny CH, Holt RG, Roy RA. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. Ultrasound Med Biol. 2009;35:603–15.

    Article  PubMed  Google Scholar 

  • Fernandez Rivas D, Ashokkumar M, Leong T, Yasui K, Tuziuti T, Kentish S, Lohse D, Gardeniers HJ. Sonoluminescence and sonochemiluminescence from a microreactor. Ultrason Sonochem. 2012;19:1252–9.

    Article  CAS  PubMed  Google Scholar 

  • Frenzel J, Schultes H. Zeit. für Physical Chemistry 1934;421.

    Google Scholar 

  • Frommhold L. Electron-atom bremsstrahlung and the sonoluminescence of rare gas bubbles. Phys Rev E. 1998;58:1899–905.

    Article  CAS  Google Scholar 

  • Gaitan DF, Crum LA, Church CC, Roy RA. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am. 1992;91:3166–83.

    Article  Google Scholar 

  • Gateau J, Aubry JF, Pernot M, Fink M, Tanter M. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2011a;58:517–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gateau J, Aubry JF, Chauvet D, Boch A, Fink M, Tanter M. In vivo bubble nucleation probability in sheep brain tissue. Phys Med Biol. 2011b;56:7001.

    Article  CAS  PubMed  Google Scholar 

  • Greenspan HP, Nadim A. On sonoluminescence of an oscillating gas bubble. Phys Fluids A. 1993;5:1065–7.

    Article  CAS  Google Scholar 

  • Gyöngy M. Passive cavitation mapping for monitoring ultrasound therapy. Oxford: Oxford University; 2010.

    Google Scholar 

  • Gyöngy M, Arora M, Noble JA, Coussios CC. Use of passive arrays for characterization and mapping of cavitation activity during HIFU exposure. In: Proceeding of 2008 IEEE ultrasonics symposium. Beijing: IEEE; 2008. pp. 871–74.

    Google Scholar 

  • Gyöngy M, Coussios C-C. Passive cavitation mapping for localization and tracking of bubble dynamics. J Acoust Soc Am. 2010a;128:EL175–80.

    Google Scholar 

  • Gyöngy M, Coussios C-C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans Biomed Eng. 2010;57:48–56.

    Article  PubMed  Google Scholar 

  • Gyöngy M, Coviello CM. Passive cavitation mapping with temporal sparsity constraint. J Acoust Soc Am. 2011;130:3489–97.

    Article  PubMed  Google Scholar 

  • Hallez L, Touyeras F, Hihn JY, Klima J, Guey JL, Spajer M, Bailly Y. Characterization of HIFU transducers designed for sonochemistry application: cavitation distribution and quantification. Ultrasonics. 2010;50:310–7.

    Article  CAS  PubMed  Google Scholar 

  • Hammer D, Frommhold L. Electron-ion bremsstrahlung spectra calculations for sonoluminescence. Phys Rev E. 2002;66:056303.

    Article  Google Scholar 

  • Hatanaka S-I, Yasui K, Tuziuti T, Mitome H. Difference in threshold between sono-and sonochemical luminescence. Jpn J Appl Phys. 2000;39:2962–6.

    Article  CAS  Google Scholar 

  • Hoerig CL, Serrone JC, Burgess MT, Zuccarello M, Mast TD. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model. J Ther Ultrasound. 2014;2:14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Holland CK, Roy R, Apfel R, Crum L. In vitro detection of cavitation induced by a diagnostic ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Hollman K, Rigby K, O’Donnell M. Coherence factor of speckle from a multi-row probe. In: Proceeding of 1999 IEEE ultrasonics symposium. Caesars Tahoe: IEEE; 1999. pp. 1257–1260.

    Google Scholar 

  • Holt M. Underwater explosions. Annu Rev Fluid Mech. 1977;9:187–214.

    Article  Google Scholar 

  • Hu H, Xu SS, Yuan Y, Liu RN, Wang SP, Wan MX. Spatial–temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. J Acoust Soc Am. 2015;137:2563–2572.

    Google Scholar 

  • Jarman P. Sonoluminescence: a discussion. J Acoust Soc Am. 2005;32:1459–62.

    Article  Google Scholar 

  • Jensen CR, Cleveland RO, Coussios CC. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach. Phys Med Biol. 2013;58:5833–50.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5:321–7.

    Article  CAS  PubMed  Google Scholar 

  • Khokhlova T, Li T, Sapozhnikov O, Hwang JH. The use of twinkling artifact of Doppler imaging to monitor cavitation in tissue during high intensity focused ultrasound therapy. In: Proceedings of meetings on acoustics. Montreal: Acoustical Society of America; 2013. p. 075034.

    Google Scholar 

  • Lauterborn W, Ohl C-D. Cavitation bubble dynamics. Ultrason Sonochem. 1997;4:65–75.

    Article  CAS  PubMed  Google Scholar 

  • Leighton TG. The acoustic bubble. London: Academic Press; 1994.

    Google Scholar 

  • Leighton TG, Walton A, Field J. High-speed photography of transient excitation. Ultrasonics. 1989;27:370–3.

    Article  Google Scholar 

  • Li T, Khokhlova T, Sapozhnikov O, O’Donnell M, Hwang JH. A new active cavitation mapping technique for pulsed HIFU applications-bubble doppler. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:1698–708.

    Article  PubMed  Google Scholar 

  • Luther S, Mettin R, Koch P, Lauterborn W. Observation of acoustic cavitation bubbles at 2250 frames per second. Ultrason Sonochem. 2001;8:159–62.

    Article  CAS  PubMed  Google Scholar 

  • Mast TD, Salgaonkar VA, Karunakaran C, Besse JA, Datta S, Holland CK. Measurements of cavitation dose, echogenicity, and temperature during ultrasound ablation. In: 6th international symposium on therapeutic ultrasound. Oxford: AIP Conference Proceedings; 2007. pp. 335–41.

    Google Scholar 

  • McLaughlan J, Rivens I, Haar GT, Shaw A, Leighton T, Humphrey V, Birkin P, Vian C. The design and implementation of a passive cavitation detection system for use with ex vivo tissue. In: 5th international symposium on therapeutic ultrasound. New York: AIP Conference Proceedings; 2006. pp. 338–42.

    Google Scholar 

  • McLaughlan J, Rivens I, ter Haar G. Cavitation detection in ex vivo bovine liver tissue exposed to high intensity focused ultrasound (HIFU). In: 4th IEEE international symposium on biomedical imaging: from nano to macro. Arlington: IEEE; 2007. pp. 1124–27.

    Google Scholar 

  • McLaughlan J, Rivens I, Leighton T, ter Haar G. A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound. Ultrasound Med Biol. 2010;36:1327–44.

    Article  PubMed  Google Scholar 

  • McMurray H, Wilson B. Mechanistic and spatial study of ultrasonically induced luminol chemiluminescence. J Phys Chem A. 1999;103:3955–62.

    Article  CAS  Google Scholar 

  • Moss WC, Clarke DB, White JW, Young DA. Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys Fluids. 1994;6:2979–85.

    Article  Google Scholar 

  • Moussatov A, Granger C, Dubus B. Cone-like bubble formation in ultrasonic cavitation field. Ultrason Sonochem. 2003;10:191–5.

    Article  CAS  PubMed  Google Scholar 

  • Neppiras E, Noltingk B. Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc Sect B. 1951;64:1032–38.

    Google Scholar 

  • Nguyen MM, Kopechek JA, Hasjim B, Villanueva FS, Kim K. Passive cavitation imaging with nucleic acid-loaded microbubbles in mouse tumors. J Acoust Soc Am. 2014;136:2302.

    Article  Google Scholar 

  • Noltingk BE, Neppiras EA Cavitation produced by ultrasonics. Proc Phys Soc Sect B. 1950;63:674–85.

    Google Scholar 

  • Ohl S-W, Ow DS-W, Klaseboer E, Wong VV, Camattari A, Ohl C-D. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip. 2010;10:1848–55.

    Article  PubMed  Google Scholar 

  • Pecha R, Gompf B. Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett. 2000;84:1328–30.

    Article  CAS  PubMed  Google Scholar 

  • Putterman S, Weninger K. Sonoluminescence: how bubbles turn sound into light. Annu Rev Fluid Mech. 2000;32:445–76.

    Article  Google Scholar 

  • Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound Med Biol. 2005;31:947–56.

    Article  PubMed  Google Scholar 

  • Robinson P, Blake J, Kodama T, Shima A, Tomita Y. Interaction of cavitation bubbles with a free surface. J Appl Phys. 2001;89:8225–37.

    Article  CAS  Google Scholar 

  • Roy RA, Madanshetty SI, Apfel RE. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound. J Acoust Soc Am. 1990;87:2451.

    Article  CAS  PubMed  Google Scholar 

  • Salgaonkar VA, Datta S, Holland CK, Mast TD. Passive cavitation imaging with ultrasound arrays. J Acoust Soc Am. 2009a;126:3071–83.

    Google Scholar 

  • Salgaonkar VA, Datta S, Holland CK, Mast TD. Passive imaging of cavitational acoustic emissions with ultrasound arrays. In: AIP conference proceedings, 2009b. pp. 73–7.

    Google Scholar 

  • Shi WT, Forsberg F, Tornes A, Ostensen J, Goldberg B. Experimental investigation of contrast microbubble destruction. In: Proceeding of 2001 IEEE ultrasonics symposium, Atlanta: IEEE; 2001. pp. 1691–94.

    Google Scholar 

  • Shi WT, Forsberg F, Tornes A, Ostensen J, Goldberg BB. Destruction of contrast microbubbles and the association with inertial cavitation. Ultrasound Med Biol. 2000;26:1009–19.

    Article  CAS  PubMed  Google Scholar 

  • Suslick KS. Sonochemistry. Science. 1990;247:1439–45.

    Article  CAS  PubMed  Google Scholar 

  • Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M. Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 1999;357:335–53.

    Article  CAS  Google Scholar 

  • Suslick KS, Hammerton DA, Cline RE. Sonochemical hot spot. J Am Chem Soc. 1986;108:5641–2.

    Article  CAS  Google Scholar 

  • Synnevag JF, Austeng A, Holm S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1606–13.

    Article  PubMed  Google Scholar 

  • Taylor K, Jarman P. The spectra of sonoluminescence. Aust J Phys. 1970;23:319–34.

    CAS  Google Scholar 

  • Tu J, Matula TJ, Brayman AA, Crum LA. Inertial cavitation dose produced in ex vivo rabbit ear arteries with optison@ by 1-MHz pulsed ultrasound. Ultrasound Med Biol. 2006;32:281–8.

    Article  PubMed  Google Scholar 

  • Vaezy S, Andrew M, Kaczkowski P, Crum L. Image-guided acoustic therapy. Annu Rev Biomed Eng. 2001a;3:375–90.

    Article  CAS  PubMed  Google Scholar 

  • Vaezy S, Martin R, Mourad P, Crum L. Hemostasis using high intensity focused ultrasound. Eur J Ultrasound. 1999;9:79–87.

    Article  CAS  PubMed  Google Scholar 

  • Vaezy S, Shi X, Martin RW, Chi E, Nelson PI, Bailey MR, Crum LA. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol. 2001b;27:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Vaezy S, Vaezy S, Starr F, Chi E, Cornejo C, Crum L, Martin RW. Intra-operative acoustic hemostasis of liver: production of a homogenate for effective treatment. Ultrasonics. 2005;43:265–9.

    Article  PubMed  Google Scholar 

  • Vazquez G, Camara C, Putterman S, Weninger K. Sonoluminescence: nature’s smallest blackbody. Opt Lett. 2001;26:575–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZS, Li J, Wu RB. Time-delay-and time-reversal-based robust Capon beamformers for ultrasound imaging. IEEE Trans Med Imaging. 2005;24:1308–22.

    Article  PubMed  Google Scholar 

  • Xu N, Wang L, Hu XW. Numerical study of electronic impact and radiation in sonoluminescence. Phys Rev E. 1998;57:1615–20.

    Article  CAS  Google Scholar 

  • Xu N, Wang L, Hu XW. Extreme electrostatic phenomena in a single sonoluminescing bubble. Phys Rev Lett. 1999;83:2441.

    Article  CAS  Google Scholar 

  • Xu N, Wang L, Hu XW. Bremsstrahlung of nitrogen and noble gases in single-bubble sonoluminescence. Phys Rev E. 2000;61:2611–6.

    Article  CAS  Google Scholar 

  • Xu Z, Raghavan M, Hall TL, Mycek M-A, Fowlkes JB, Cain CA. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy-histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1122–32.

    Article  PubMed  Google Scholar 

  • Yasui K. Mechanism of single-bubble sonoluminescence. Phys Rev E. 1999;60:1754–8.

    Article  CAS  Google Scholar 

  • Young FR. Sonoluminescence. Boca Raton: CRC Press; 2004.

    Book  Google Scholar 

  • Zhang SY, Li C, Yin H, Wang SP, Wan MX. Surface vibration and nearby cavitation of an ex vivo bovine femur exposed to high intensity focused ultrasound. J Acoust Soc Am. 2013;134:1656–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxi Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ding, T., Yin, H., Hu, H., Bai, C., Wan, M. (2015). Cavitation Mapping. In: Wan, M., Feng, Y., Haar, G. (eds) Cavitation in Biomedicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7255-6_2

Download citation

Publish with us

Policies and ethics