Skip to main content

Fundamentals of Cavitation

  • Chapter
  • First Online:
Cavitation in Biomedicine

Abstract

Cavitation is defined as the formation of one or more cavities in a liquid. The word “formation” can refer, in a general sense, to both the creation of a new cavity and the expansion of a preexisting gas pocket to a size where macroscopic effects, e.g., its shape and size, acoustic emissions, sonoluminescence, and erosive properties, can be observed. The cavity’s gas content refers to the liquid’s vapor, gas dissolved in the liquid, or combinations thereof. Cavitation usually occurs as a response when the pressure has been reduced sufficiently below the vapor pressure of the liquid or when the temperature has been elevated above the boiling point. In addition, chemical-, electrical-, and radiation-induced cavitation also exists. This book only considers the first case of cavity formation—that associated with a drop in pressure or a rise in temperature—in response to an acoustic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akulichev V, Rozenberg L. Certain relations in a cavitation region (Energy dissipation of acoustic waves propagating in liquid medium and producing cavitation). Sov Phys Acoust. 1966;11:246–51.

    Google Scholar 

  • Allen JS, Roy RA. Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. J Acoust Soc Am. 2000a;107(6):3167–78.

    Article  PubMed  Google Scholar 

  • Allen JS, Roy RA. Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity. J Acoust Soc Am. 2000b;108(4):1640–50.

    Article  CAS  PubMed  Google Scholar 

  • Allen JS, May DJ, Ferrara KW. Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med Biol. 2002;28(6):805–16.

    Article  PubMed  Google Scholar 

  • Apfel RE. Acoustic cavitation prediction. J Acoust Soc Am. 1981;69:1624–33.

    Article  Google Scholar 

  • Apfel RE. Acoustic cavitation inception. Ultrasonics. 1984;22(4):167–73.

    Article  Google Scholar 

  • Apfel RE. The role of impurities in cavitation-threshold determination. J Acoust Soc Am. 2005;48(5B):1179–86.

    Article  Google Scholar 

  • Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol. 1991;17(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  • Askar’yan G, Moroz E. Pressure on evaporation of matter in a radiation beam. Sov J Exp Theor Phys. 1963;16:1638–9.

    Google Scholar 

  • Blake JR, Gibson D. Growth and collapse of a vapour cavity near a free surface. J Fluid Mech. 1981;111:123–40.

    Article  Google Scholar 

  • Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett. 2004;84(4):631–3.

    Article  CAS  Google Scholar 

  • Bloembergen N. Laser-induced electric breakdown in solids. IEEE J Quantum Electron. 1974;10(3):375–86.

    Article  CAS  Google Scholar 

  • Borkent BM, Gekle S, Prosperetti A, Lohse D. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys Fluids. 2009;21(10):102003.

    Article  Google Scholar 

  • Bouakaz A, Versluis M, de Jong N. High-speed optical observations of contrast agent destruction. Ultrasound Med Biol. 2005;31(3):391–9.

    Article  PubMed  Google Scholar 

  • Brewer RG, Rieckhoff KE. Stimulated Brillouin scattering in liquids. Phys Rev Lett. 1964;13(11):334.

    Article  Google Scholar 

  • Briggs H, Johnson J, Mason W. Properties of liquids at high sound pressure. J Acoust Soc Am. 1947;19:664–77.

    Article  Google Scholar 

  • Brujan EA, Ikeda T, Matsumoto Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol. 2005;50(20):4797–809.

    Article  CAS  PubMed  Google Scholar 

  • Chang PH, Shun K, Wu S-J, Levene HB. Second harmonic imaging and harmonic Doppler measurements with Albunex. IEEE Trans Ultrason Ferroelectr Freq Control. 1995;42(6):1020–7.

    Article  Google Scholar 

  • Chatterjee D, Sarkar K. A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med Biol. 2003;29(12):1749–57.

    Article  PubMed  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett. 2011;106(3):034301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chomas JE, Dayton P, Allen J, Morgan K, Ferrara KW. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(1):232–48.

    Article  CAS  PubMed  Google Scholar 

  • Church CC. The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles. J Acoust Soc Am. 1995;97(3):1510–21.

    Article  Google Scholar 

  • Correas J-M, Bridal L, Lesavre A, Méjean A, Claudon M, Hélénon O. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol. 2001;11(8):1316–28.

    Article  CAS  PubMed  Google Scholar 

  • Crum LA. Tensile strength of water. Nature. 1979;278(5700):148–9.

    Article  CAS  Google Scholar 

  • de Jong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gas filled microspheres: theoretical consideration and some measurements. Ultrasonics. 1992;30(2):95–103.

    Article  PubMed  Google Scholar 

  • Duncan J, Zhang S. On the interaction of a collapsing cavity and a complaint wall. J Fluid Mech. 1991;226:401–23.

    Article  CAS  Google Scholar 

  • Epstein P, Plesset M. On the stability of gas bubbles in liquid-gas solutions. J Chem Phys. 1950;18:1505–9.

    Article  CAS  Google Scholar 

  • Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol. 2010;36(8):1364–75.

    Article  PubMed Central  PubMed  Google Scholar 

  • Farny CH, Wu T, Holt RG, Murray TW, Roy RA. Nucleating cavitation from laser-illuminated nano-particles. Acoust Res Lett Online. 2005;6(3):138–43.

    Article  Google Scholar 

  • Flynn H. Physics of acoustic cavitation in liquids. Physical Acoustics. 1964;1(Part B):57–172.

    Google Scholar 

  • Fox FE, Herzfeld KF. Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am. 1954;26:984–9.

    Article  Google Scholar 

  • Gibson D, Blake JR. The growth and collapse of bubbles near deformable surfaces. Appl Sci Res. 1982;38(1):215–24.

    Article  CAS  Google Scholar 

  • Glazman RE. Effects of adsorbed films on gas bubble radial oscillations. J Acoust Soc Am. 1983;74(3):980–6.

    Article  CAS  Google Scholar 

  • Harvey EN, McElroy WD, Whiteley AH. On cavity formation in water. J Appl Phys. 1947;18(2):162–72.

    Article  CAS  Google Scholar 

  • Hay TA, Ilinskii YA, Zabolotskaya EA, Hamilton MF. Model for the dynamics of a spherical bubble undergoing small shape oscillations between parallel soft elastic layers. J Acoust Soc Am. 2013;134(2):1454–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho VH, Smith MJ, Slater NK. Effect of magnetite nanoparticle agglomerates on the destruction of tumor spheroids using high intensity focused ultrasound. Ultrasound Med Biol. 2011;37(1):169–75.

    Article  PubMed  Google Scholar 

  • Hoff L. Acoustic characterization of contrast agents for medical ultrasound imaging. Berlin: Springer; 2001.

    Book  Google Scholar 

  • Hoff L, Sontum PC, Hovem JM. Oscillations of polymeric microbubbles: Effect of the encapsulating shell. J Acoust Soc Am. 2000;107(4):2272–80.

    Article  PubMed  Google Scholar 

  • Hong C, Brayman AA, Kreider W, Bailey MR, Matula TJ. Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound Med Biol. 2011;37(12):2139–48.

    Article  Google Scholar 

  • Hosseinkhah N, Hynynen K. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels. Phys Med Biol. 2012;57(3):785–808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hua C, Johnsen E. Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium. Phys Fluids. 2013;25(8):083101.

    Article  Google Scholar 

  • Johnson BD, Cooke RC. Generation of stabilized microbubbles in seawater. Science. 1981;213(4504):209–11.

    Article  CAS  PubMed  Google Scholar 

  • Keller JB, Miksis M. Bubble oscillations of large amplitude. J Acoust Soc Am. 1980;68(2):628–33.

    Article  Google Scholar 

  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PK, Hammer DX, Rockwell BA. Laser-induced breakdown in aqueous media. Prog Quantum Electron. 1997;21(3):155–248.

    Article  CAS  Google Scholar 

  • Kotaidis V, Dahmen C, von Plessen G, Springer F, Plech A. Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J Chem Phys. 2006;124(18):184702.

    Article  CAS  PubMed  Google Scholar 

  • Labouret W, Kurz T. Physics of bubble oscillations. Rep Prog Phys. 2010;73(10):106501.

    Article  Google Scholar 

  • Lauterborn W. Optische kavitation. Phys Blätter. 1976;32(12):553–63.

    Article  Google Scholar 

  • Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech. 1975;72(02):391–3.

    Article  Google Scholar 

  • Lee M, Klaseboer E, Khoo B. On the boundary integral method for the rebounding bubble. J Fluid Mech. 2007;570:407–29.

    Article  Google Scholar 

  • Leighton T. The acoustic bubble. London: Academic Press; 1994.

    Google Scholar 

  • Lukianova-Hleb EY, Santiago C, Wagner DS, Hafner JH, Lapotko DO. Generation and detection of plasmonic nanobubbles in zebrafish. Nanotechnology. 2010;21(22):225102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maris HJ. Introduction to the physics of nucleation. CR Phys. 2006;7(9):946–58.

    Article  CAS  Google Scholar 

  • Miao H, Gracewski SM, Dalecki D. Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage. J Acoust Soc Am. 2008;124(4):2374–84.

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996;22(9):1131–54.

    Article  CAS  PubMed  Google Scholar 

  • Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibaov A, Ferrara KW. Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1494–509.

    Article  CAS  PubMed  Google Scholar 

  • Neppiras E. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics. 1984;22(1):25–8.

    Article  Google Scholar 

  • Oguz HN, Prosperetti A. Bubble oscillations in the vicinity of a near plane free-surface. J Acoust Soc Am. 1990;87(5):2085–92.

    Article  Google Scholar 

  • Oguz HN, Prosperetti A. The natural frequency of oscillation of gas bubbles in tubes. J Acoust Soc Am. 1998;103(6):3301–8.

    Article  Google Scholar 

  • Pitt WG, Singh RN, Perez KX, Husseini GA, Jack DR. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem. 2014;21(2):879–91.

    Article  CAS  PubMed  Google Scholar 

  • Plesset M. The dynamics of cavitation bubbles. J Appl Mech. 1949;16:277.

    Google Scholar 

  • Porter TM, Smith DA, Holland CK. Acoustic techniques for assessing the optison destruction threshold. J Ultrasound Med. 2006;25(12):1519–29.

    PubMed Central  PubMed  Google Scholar 

  • Raĭzer YP. Breakdown and heating of gases under the influence of a laser beam. Sov Phys Usp. 1966;8(5):650–73.

    Article  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst. 2007;99(14):1095–106.

    Article  CAS  PubMed  Google Scholar 

  • Ready J. Effects of high-power laser radiation. New York: Academic Press; 1971.

    Google Scholar 

  • Reznik N, Williams R, Burns PN. Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent. Ultrasound Med Biol. 2011;37(8):1271–9.

    Article  PubMed  Google Scholar 

  • Robinson PB, Blake JR, Kodama T, Shima A, Tomita Y. Interaction of cavitation bubbles with a free surface. J Appl Phys. 2001;89(12):8225–37.

    Article  CAS  Google Scholar 

  • Sacchi C. Laser-induced electric breakdown in water. J Opt Soc Am B. 1991;8(2):337–45.

    Article  CAS  Google Scholar 

  • Sankin GN, Zhong P. Interaction between shock wave and single inertial bubbles near an elastic boundary. Phys Rev E. 2006;74(4):046304.

    Article  CAS  Google Scholar 

  • Sheeran PS, Dayton PA. Phase-change contrast agents for imaging and therapy. Curr Pharm Des. 2012;18(15):2152–65.

    Article  CAS  PubMed  Google Scholar 

  • Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci. 2014;111(5):1697–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson DH, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372–82.

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Meyerand R Jr. Laser radiation induced gas breakdown. New York: Wiley; 1976.

    Google Scholar 

  • Smith DA, Porter TM, Martinez J, Huang S, MacDonald RC, McPherson DD, Holland CK. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. Ultrasound Med Biol. 2007;33(5):797–809.

    Article  PubMed  Google Scholar 

  • Strasberg M. Onset of Ultrasonic Cavitation in Tap Water. J Acoust Soc Am. 1959;31(2):163–76.

    Article  Google Scholar 

  • Temperley H. The behaviour of water under hydrostatic tension: III. Proc Phys Soc. 1947;59(2):199.

    Article  CAS  Google Scholar 

  • ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol. 2007;93(1–3):111–29.

    PubMed  Google Scholar 

  • Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am. 1996;100(1):148–65.

    Article  Google Scholar 

  • Yang XM, Church CC. A model for the dynamics of gas bubbles in soft tissue. J Acoust Soc Am. 2005;118(6):3595–606.

    Article  PubMed  Google Scholar 

  • Ye T, Bull JL. Microbubble expansion in a flexible tube. J Biomech Eng-Trans Asme. 2006;128(4):554–63.

    Article  Google Scholar 

  • Yount DE. Skins of varying permeability: a stabilization mechanism for gas cavitation nuclei. J Acoust Soc Am. 1979;65:1429.

    Article  Google Scholar 

  • Zhang P, Porter T. An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound Med Biol. 2010;36(11):1856–66.

    Article  PubMed  Google Scholar 

  • Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts W, Ives K, Carson PL. Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol. 2010;36(10):1691–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Belova V, Wang H, Dong W, Möhwald H. Controlled cavitation at nano/microparticle surfaces. Chem Mater. 2014;26(7):2244–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxi Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, S., Qiao, Y., Liu, X., Church, C.C., Wan, M. (2015). Fundamentals of Cavitation. In: Wan, M., Feng, Y., Haar, G. (eds) Cavitation in Biomedicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7255-6_1

Download citation

Publish with us

Policies and ethics