Skip to main content

Current Trends in Memory Implantation and Rehabilitation

  • Chapter
Recent Progress in Brain and Cognitive Engineering

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 5))

Abstract

Hippocampus is believed to be the brain region critical for memory storage and recall. Damage to the hippocampus by lesions or neurodegenerative diseases such as Alzheimer’s disease could lead to memory deficits. However, there is yet no treatment method available. Direct deep-brain stimulation (DBS) of the hippocampus has been attempted in an effort to find a treatment method for memory dysfunction and Alzheimer’s disease in the last few decades but with limited success. Recently, a novel approach has been developed where an implantation of a very large scale integration (VLSI) microchip containing a biomimetic computational model could act as an artificial bridge to replace the damaged hippocampal circuit in vivo. Here, we discuss the memory implantation techniques; from the conventional DBS method to the current memory implantation technology using an artificial neural microchip. Furthermore, we propose future directions towards the development of a physiologically realistic memory implantation chip design that could enhance the performance of the memory implant and be used for the treatment of memory-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403

    Article  CAS  PubMed  Google Scholar 

  3. Alzheimer’s A (2014) 2014 Alzheimer’s disease facts and figures. Alzheimers Dement 10:e47–e92

    Article  Google Scholar 

  4. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  PubMed  Google Scholar 

  5. Halgren E, Wilson CL (1985) Recall deficits produced by afterdischarges in the human hippocampal formation and amygdala. Electroencephalogr Clin Neurophysiol 61:375–380

    Article  CAS  PubMed  Google Scholar 

  6. Halgren E, Wilson CL, Stapleton JM (1985) Human medial temporal-lobe stimulation disrupts both formation and retrieval of recent memories. Brain Cogn 4:287–295

    Article  CAS  PubMed  Google Scholar 

  7. Coleshill SG, Binnie CD, Morris RG, Alarcon G, van Emde Boas W, Velis DN et al (2004) Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation. J Neurosci 24:1612–1616

    Article  CAS  PubMed  Google Scholar 

  8. Berger TW, Gerhardt G, Liker MA, Soussou W (2008) The impact of neurotechnology on rehabilitation. IEEE Rev Biomed Eng 1:157–197

    Article  PubMed  Google Scholar 

  9. Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8:046017

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hampson RE, Song D, Chan RH, Sweatt AJ, Riley MR, Goonawardena AV et al (2012) Closing the loop for memory prosthesis: detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Trans Neural Syst Rehabil Eng 20:510–525

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    CAS  PubMed  Google Scholar 

  12. Andersen P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222–238

    CAS  PubMed  Google Scholar 

  13. Rempel-Clower NL, Zola SM, Squire LR, Amaral DG (1996) Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 16:5233–5255

    CAS  PubMed  Google Scholar 

  14. Milner B, Taylor L, Sperry RW (1968) Lateralized suppression of dichotically presented digits after commissural section in man. Science 161:184–186

    Article  CAS  PubMed  Google Scholar 

  15. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  17. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  CAS  PubMed  Google Scholar 

  19. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    CAS  PubMed  Google Scholar 

  20. Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  CAS  PubMed  Google Scholar 

  21. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363–4367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    CAS  PubMed  Google Scholar 

  23. Wixted JT, Squire LR, Jang Y, Papesh MH, Goldinger SD, Kuhn JR et al (2014) Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proc Natl Acad Sci U S A 111:9621–9626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Davis KD, Taub E, Houle S, Lang AE, Dostrovsky JO, Tasker RR et al (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of Parkinsonian symptoms. Nat Med 3:671–674

    Article  CAS  PubMed  Google Scholar 

  25. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    Article  CAS  PubMed  Google Scholar 

  26. Williams JM, Givens B (2003) Stimulation-induced reset of hippocampal theta in the freely performing rat. Hippocampus 13:109–116

    Article  CAS  PubMed  Google Scholar 

  27. Ehret A, Haaf A, Jeltsch H, Heimrich B, Feuerstein TJ, Jackisch R (2001) Modulation of electrically evoked acetylcholine release in cultured rat septal neurones. J Neurochem 76:555–564

    Article  CAS  PubMed  Google Scholar 

  28. Penfield W, Perot P (1963) The brain’s record of auditory and visual experience. A final summary and discussion. Brain 86:595–696

    Article  CAS  PubMed  Google Scholar 

  29. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM et al (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31:13469–13484

    Article  CAS  PubMed  Google Scholar 

  30. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM (2008) The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 108:132–138

    Article  PubMed  Google Scholar 

  31. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    Article  CAS  PubMed  Google Scholar 

  32. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64:461–467

    Article  PubMed  Google Scholar 

  33. Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B et al (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366:502–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hardenacke K, Shubina E, Buhrle CP, Zapf A, Lenartz D, Klosterkotter J et al (2013) Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: a systematic review. Front Psychiatry 4:159

    Article  PubMed Central  PubMed  Google Scholar 

  35. Suthana N, Fried I (2014) Deep brain stimulation for enhancement of learning and memory. Neuroimage 85(3):996–1002

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA et al (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10:066013

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gaffan D (1974) Recognition impaired and association intact in the memory of monkeys after transection of the fornix. J Comp Physiol Psychol 86:1100–1109

    Article  CAS  PubMed  Google Scholar 

  38. Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  CAS  PubMed  Google Scholar 

  39. Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2009) Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Netw 22:1340–1351

    Article  PubMed Central  PubMed  Google Scholar 

  40. Berger TW, Song D, Chan RH, Marmarelis VZ, LaCoss J, Wills J et al (2012) A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans Neural Syst Rehabil Eng 20:198–211

    Article  PubMed Central  PubMed  Google Scholar 

  41. Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2007) Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Trans Biomed Eng 54:1053–1066

    Article  PubMed  Google Scholar 

  42. Hampson RE, Gerhardt GA, Marmarelis V, Song D, Opris I, Santos L et al (2012) Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 9:056012

    Article  PubMed Central  PubMed  Google Scholar 

  43. Deadwyler SA, Berger TW, Sweatt AJ, Song D, Chan RH, Opris I et al (2013) Donor/recipient enhancement of memory in rat hippocampus. Front Syst Neurosci 7:120

    Article  PubMed Central  PubMed  Google Scholar 

  44. Song D, Harway M, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2014) Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling. Front Syst Neurosci 8:97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z et al (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–384

    Article  CAS  PubMed  Google Scholar 

  46. Santos FJ, Costa RM, Tecuapetla F (2011) Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72:197–198

    Article  CAS  PubMed  Google Scholar 

  47. Jarosiewicz B, Masse NY, Bacher D, Cash SS, Eskandar E, Friehs G et al (2013) Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia. J Neural Eng 10:046012

    Article  PubMed Central  PubMed  Google Scholar 

  48. Robinson BS, Song D, Berger TW (2013) Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study. Conf Proc IEEE Eng Med Biol Soc 2013:5578–5581

    PubMed  Google Scholar 

  49. Dong S, Robinson BS, Granacki JJ, Berger TW (2014) Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models. Conf Proc IEEE Eng Med Biol Soc 2014:714–717

    Google Scholar 

  50. Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  CAS  PubMed  Google Scholar 

  51. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438

    Article  CAS  PubMed  Google Scholar 

  52. Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193

    Article  CAS  PubMed  Google Scholar 

  53. Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225

    Article  CAS  PubMed  Google Scholar 

  54. Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39:807–820

    Article  CAS  PubMed  Google Scholar 

  55. Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA (2008) Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience 155:64–75

    Article  CAS  PubMed  Google Scholar 

  59. Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600–2613

    Article  PubMed  Google Scholar 

  60. Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310–3323

    Article  CAS  PubMed  Google Scholar 

  61. Hasselmo ME, Schnell E, Barkai E (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci 15:5249–5262

    CAS  PubMed  Google Scholar 

  62. Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20:423–446

    CAS  PubMed  Google Scholar 

  63. Rachmuth G, Shouval HZ, Bear MF, Poon CS (2011) A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc Natl Acad Sci U S A 108:E1266–E1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL et al (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Ramirez S, Tonegawa S (2014) Inception of a false memory by optogenetic manipulation of a hippocampal memory engram. Philos Trans R Soc Lond B Biol Sci 369:20130142

    Article  PubMed Central  PubMed  Google Scholar 

  67. Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M et al (2012) Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul 5:223–230

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeehyun Kwag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jang, H.J., Park, S.W., Kwag, J. (2015). Current Trends in Memory Implantation and Rehabilitation. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_5

Download citation

Publish with us

Policies and ethics