Skip to main content

Deep Learning in Diagnosis of Brain Disorders

  • Chapter

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 5))

Abstract

In this chapter, we introduce our recent work on neuroimaging-based AD diagnosis with machine learning techniques, especially deep learning. Specifically, we focus on the problems of feature representation and complementary information fusion from different modalities, e.g., MRI and PET. In our experimental results on the publicly available ADNI dataset, we could validate the effectiveness of the deep learning-based feature representation and its superiority to the competing methods. We also present the importance of collaborating communities of machine learning and clinical neuroscience for clinical interpretation of the learned feature representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete list of ADNI investigators is available at http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Authorship_List.pdf.

  2. 2.

    In our work, ‘progressive’ and ‘stable’ denote whether the subjects with MCI progressed to AD in 18 months.

  3. 3.

    The number of hidden units were manually determined proportional to the input dimension. As for the sparsity target and the weighting parameter of the sparsity penalty in Eq. (14.1), we set to ρ = 0. 05 and γ = 0. 01.

References

  1. Alzheimer’s Association (2012) 2012 Alzheimer’s disease facts and figures. Alzheimer’s & Dement 8(2):131–168

    Article  Google Scholar 

  2. Baron J, Chételat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. NeuroImage 14(2):298–309

    Article  CAS  PubMed  Google Scholar 

  3. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  Google Scholar 

  4. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems, vol 19. MIT Press, Cambridge, pp 153–160

    Google Scholar 

  5. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  6. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32(12):2322.e19–2322.e27

    Google Scholar 

  7. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biolog Cybern 36(4):93–202

    Article  Google Scholar 

  8. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  PubMed  Google Scholar 

  9. Hinton G, Deng L, Yu D, rahman Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Dahl TSG, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 29(6):82–97

    Google Scholar 

  10. Ishii K, Kawachi T, Sasaki H, Kono AK, Fukuda T, Kojima Y, Mori E (2005) Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. Am J Neuroradiol 26:333–340

    PubMed  Google Scholar 

  11. Kim M, Wu G, Wang Q, Lee SW, Shen D (2015) Improved image registration by sparse patch-based deformation estimation. NeuroImage 105:257–268

    Article  PubMed  Google Scholar 

  12. Kohannim O, Hua X, Hibar DP, Lee S, Chou YY, Toga AW Jr, Jack CR, Weiner MW, Thompson PM (2010) Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol Aging 31(8):1429–1442

    Article  PubMed Central  PubMed  Google Scholar 

  13. LeCun Y, Bottou L, Orr G, Müller KR (1998) Efficient backprop. In: Orr G, Müller KR (eds) Neural networks: tricks of the trade. Lecture notes in computer science, vol 1524. Springer, Berlin/Heidelberg, pp 9–50

    Chapter  Google Scholar 

  14. Liao S, Gao Y, Oto A, Shen D (2013) Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: Medical image computing and computer-assisted intervention (MICCAI 2013), Nagoya. Lecture notes in computer science, vol 8150, pp 254–261

    Google Scholar 

  15. Liu M, Zhang D, Shen D, the Alzheimer’s Disease Neuroimaging Initiative (2013) Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum Brain Mapp 35(4):1305–1319

    Google Scholar 

  16. Mohamed A, Dahl GE, Hinton GE (2012) Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Process 20(1):14–22

    Article  Google Scholar 

  17. Montavon G, Braun ML, Müller KR (2011) Kernel analysis of deep networks. J Mach Learn Res 12:2563–2581

    Google Scholar 

  18. Montavon G, Orr GB, Müller KR (eds) (2012) Neural networks: tricks of the trade. Lecture notes in computer science, vol 7700, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  19. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: Proceedings of the 28th international conference on machine learning, Bellevue, pp 689–696

    Google Scholar 

  20. Nordberg A, Rinne JO, Kadir A, Langstrom B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6(2):78–87

    Article  CAS  PubMed  Google Scholar 

  21. Salakhutdinov R, Hinton GE (2009) Deep Boltzmann machines. In: Proceedings of the international conference on artificial intelligence and statistics, Clearwater Beach, pp 448–455

    Google Scholar 

  22. Salakhutdinov R, Hinton G (2012) An efficient learning procedure for deep Boltzmann machines. Neural Comput 24(8):1967–2006

    Article  PubMed  Google Scholar 

  23. Salakhutdinov R, Tenenbaum J, Torralba A (2013) Learning with hierarchical-deep models. IEEE Trans Pattern Anal Mach Intell 35(8):1958–1971

    Article  PubMed  Google Scholar 

  24. Sanroma G, Wu G, Gao Y, Shen D (2014) Learning to rank atlases for multiple-atlas segmentation. IEEE Trans Med Imaging 33(10):1939–1953

    Article  PubMed Central  PubMed  Google Scholar 

  25. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition, San Diego, vol 2, pp 994–1000

    Google Scholar 

  26. Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943

    Article  PubMed  Google Scholar 

  27. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565

    Google Scholar 

  28. Srivastava N, Salakhutdinov R (2012) Multimodal learning with deep Boltzmann machines. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems, vol 25, Curran Associates, Inc., pp 2231–2239

    Google Scholar 

  29. Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 35(2):286–299

    Article  PubMed  Google Scholar 

  30. Suk HI, Lee SW, Shen D (2015) Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220(2):841–859

    Article  PubMed  Google Scholar 

  31. Suk HI, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101:569–582

    Article  PubMed  Google Scholar 

  32. Suk HI, Lee SW, Shen D (2014) Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front Aging Neurosci 6(168):1–12

    Google Scholar 

  33. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68(1):49–67

    Article  Google Scholar 

  34. Zhang D, Shen D (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2):895–907

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter follows closely the prior published papers [30, 31] by the authors. This work was supported in part by NIH grants EB006733, EB008374, EB009634, AG041721, MH100217, and AG042599, and partial supported by ICT R&D program of MSIP/IITP [B0101-15-0307, Basic Software Research in Human-level Lifelong Machine Learning (Machine Learning Center)].

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Heung-Il Suk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suk, HI., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2015). Deep Learning in Diagnosis of Brain Disorders. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_14

Download citation

Publish with us

Policies and ethics