Functional Neuromonitoring in Acquired Head Injury

  • Hakseung Kim
  • Young-Tak Kim
  • Dong-Joo KimEmail author
Part of the Trends in Augmentation of Human Performance book series (TAHP, volume 5)


Patients with acquired head injury require accurate and rapid diagnosis regarding their neurophysiological status. As a timely detection of the neuropathological changes in injured brain is important for patient management, a real-time neurological monitoring is common procedure performed in a neurointensive care unit. The neuromonitoring is conducted via acquisition and analysis of various physiological parameters, such as intracranial pressure, cerebral perfusion pressure, intracranial compliance, cerebral autoregulatory capacity, cerebral oxygenation, etc. This article introduces major concepts and parameters in describing the neurological condition of head injured patients. Engineers and scientists who are interested in inter-disciplinary research with neuro-intensivists or neurosurgeons are the intended audience of this article.


Acquired head injury Intracranial pressure Neurointensive care Neuromonitoring Traumatic brain injury 



arterial blood pressure


acquired head injury


pulse amplitude of ICP


cerebral auto-regulation


cerebral blood flow


correlation coefficient between oxygen saturation and CPP


cerebral perfusion pressure


cerebrospinal fluid


computed tomography


cerebrovascular resistance


correlation between rTHb and mean arterial blood pressure


intracranial pressure


lower limits of auto-regulation


magnetic resonance angiography


magnetic resonance imaging


index of auto-regulation changes in CPP and the velocity of CBF


near infrared spectroscopy

Optimal CPP

optimal cerebral perfusion pressure


positron emission tomography


pressure reactivity index


pressure-volume curve


pressure-volume compensatory index


relative total hemoglobin


traumatic brain injury


transcranial Doppler


upper limits of auto-regulation



The authors acknowledge the use of text from the prior dissertation “Clinical and engineering models of brain compliance and deformation associated with neurological disorders.”


  1. 1.
    Towfighi A, Saver JL (2011) Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke 42(8):2351–2355. doi: 10.1161/strokeaha.111.621904 [published Online First: Epub Date]
  2. 2.
    Gean AD, Fischbein NJ (2010) Head trauma. Neuroimaging Clin N Am 20(4):527–556. doi: 10.1016/j.nic.2010.08.001 [published Online First: Epub Date]
  3. 3.
    Jones PA, Andrews PJ, Midgley S et al (1994) Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6(1):4–14CrossRefPubMedGoogle Scholar
  4. 4.
    Reilly PL (2001) Brain injury: the pathophysiology of the first hours. ‘Talk and Die revisited’. J Clin Neurosci Off J Neurosurg Soc Australas 8(5):398–403. doi: 10.1054/jocn.2001.0916 [published Online First: Epub Date]
  5. 5.
    Talsky A, Pacione LR, Shaw T et al (2010) Pharmacological interventions for traumatic brain injury. B C Med J 53(1): 26–31Google Scholar
  6. 6.
    Mendelow AD, Crawford PJ (2005) Primary and secondary brain injury. In: Bullock PLRR (ed) Head injury – pathophysiology and management, 2nd edn. Hodder Education, Great BritainGoogle Scholar
  7. 7.
    Tisdall MM, Smith M (2007) Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth 99(1):61–67. doi: 10.1093/bja/aem143 [published Online First: Epub Date]
  8. 8.
    Weerakkody RA, Czosnyka M, Trivedi RA et al (2009) Intracranial pressure monitoring in head injury. Cambridge University Press, Cambridge/New York/Melbourne/Madrid/Cape Town/Singapore/Sao Paulo/DelhiGoogle Scholar
  9. 9.
    Gilland O, Tourtellotte WW, O'Tauma L et al (1974) Normal cerebrospinal fluid pressure. J Neurosurg 40(5):587–593. doi: 10.3171/jns.1974.40.5.0587 [published Online First: Epub Date]
  10. 10.
    Langfitt TW, Weinstein JD, Kassell NF et al (1964) Transmission of increased intracranial pressure: II. Within the supratentorial space. J Neurosurg 21:998–1005. doi: 10.3171/jns.1964.21.11.0998 [published Online First: Epub Date]
  11. 11.
    Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(149):1–193PubMedGoogle Scholar
  12. 12.
    Magnaes B (1976) Body position and cerebrospinal fluid pressure: Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44(6): 698–705. doi: 10.3171/jns.1976.44.6.0687 [published Online First: Epub Date]
  13. 13.
    Magnaes B (1976) Body position and cerebrospinal fluid pressure: Part 1: Clinical studies on the effect of rapid postural changes. J Neurosurg 44(6):687–697. doi: 10.3171/jns.1976.44.6.0687 [published Online First: Epub Date]
  14. 14.
    Welch K (1980) The intracranial pressure in infants. J Neurosurg 52(5):693–699. doi: 10.3171/jns.1980.52.5.0693 [published Online First: Epub Date]
  15. 15.
    McAuley D (2009) Early phase care of patients with moderate and severe head injury. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, Cambridge, pp 62–78Google Scholar
  16. 16.
    Smith M (2009) Principle of head injury intensive care management. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, Cambridge, pp 79–86Google Scholar
  17. 17.
    Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8(1):5. doi: 10.1186/2045-8118-8-5 [published Online First: Epub Date]
  18. 18.
    Fog M (1938) The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry 1(3):187–197PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Symon L, Held K, Dorsch NW (1973) A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4(2):139–147CrossRefPubMedGoogle Scholar
  20. 20.
    Budohoski KP, Czosnyka M, Kirkpatrick PJ et al (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. doi: 10.1038/nrneurol.2013.11 [published Online First: Epub Date]
  21. 21.
    Vincent JL, Berre J (2005) Primer on medical management of severe brain injury. Crit Care Med 33(6):1392–1399CrossRefPubMedGoogle Scholar
  22. 22.
    Dutton RP, McCunn M (2003) Traumatic brain injury. Curr Opin Crit Care 9(6):503–509CrossRefPubMedGoogle Scholar
  23. 23.
    Helmy A, Vizcaychipi M, Gupta AK (2007) Traumatic brain injury: intensive care management. Br J Anaesth 99(1):32–42. doi: 10.1093/bja/aem139 [published Online First: Epub Date]
  24. 24.
    Patel HC, Bouamra O, Woodford M et al (2005) Trauma audit and research network: trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 366:1538–1544CrossRefPubMedGoogle Scholar
  25. 25.
    Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Cremer OL, van Dijk GW, van Wensen E et al (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33(10):2207–2213CrossRefPubMedGoogle Scholar
  27. 27.
    Resnick DK, Marion DW, Carlier P (1997) Outcome analysis of patients with severe head injuries and prolonged intracranial hypertension. J Trauma 42(6):1108–1111CrossRefPubMedGoogle Scholar
  28. 28.
    Balestreri M, Czosnyka M, Hutchinson P et al (2006) Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care 4(1):8–13. doi: 10.1385/NCC:4:1:008 [published Online First: Epub Date]
  29. 29.
    Kim DJ, Czosnyka Z, Keong N et al (2009) Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64(3):494–501; discussion 01–2 doi: 10.1227/01.NEU.0000338434.59141.89 [published Online First: Epub Date]
  30. 30.
    Lofgren J, von Essen C, Zwetnow NN (1973) The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand 49(5):557–574PubMedGoogle Scholar
  31. 31.
    Avezaat CJ, van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42(8):687–700PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Whitfield PC, Patel H, Hutchinson PJ et al (2001) Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg 15(6):500–507CrossRefPubMedGoogle Scholar
  33. 33.
    Balestreri M, Czosnyka M, Steiner LA et al (2004) Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir 146(2):131–141. doi: 10.1007/s00701-003-0187-y [published Online First: Epub Date]
  34. 34.
    Timofeev I, Czosnyka M, Nortje J et al (2008) Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg 108(1):66–73. doi: 10.3171/JNS/2008/108/01/0066 [published Online First: Epub Date]
  35. 35.
    Balestreri M, Czosnyka M, Steiner LA et al (2005) Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochir Suppl95:25–28CrossRefPubMedGoogle Scholar
  36. 36.
    Brady KM, Shaffner DH, Lee JK et al (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124(6):e1205–e1212. doi: 10.1542/peds.2009-0550 [published Online First: Epub Date]
  37. 37.
    Zweifel C, Lavinio A, Steiner LA et al (2008) Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 25(4):E2. doi: 10.3171/FOC.2008.25.10.E2 [published Online First: Epub Date]
  38. 38.
    Jaeger M, Dengl M, Meixensberger J et al (2010) Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 38(5):1343–1347. doi: 10.1097/CCM.0b013e3181d45530 [published Online First: Epub Date]
  39. 39.
    Steiner LA, Czosnyka M, Piechnik SK et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30(4):733–738CrossRefPubMedGoogle Scholar
  40. 40.
    Timofeev I, Helmy A, Silva EJ et al (2009) Multimodality monitoring in head injury. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Czosnyka M, Smielewski P, Lavinio A et al (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106(1):234–239, table of contents doi: 10.1213/01.ane.0000295802.89962.13 [published Online First: Epub Date]
  42. 42.
    Czosnyka M, Matta BF, Smielewski P et al (1998) Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88(5):802–808. doi: 10.3171/jns.1998.88.5.0802 [published Online First: Epub Date]
  43. 43.
    Springborg JB, Frederiksen HJ, Eskesen V et al (2005) Trends in monitoring patients with aneurysmal subarachnoid haemorrhage. Br J Anaesth 94(3):259–270. doi: 10.1093/bja/aei004 [published Online First: Epub Date]
  44. 44.
    Bellner J, Romner B, Reinstrup P et al (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51; discussion 51 doi: 10.1016/j.surneu.2003.12.007 [published Online First: Epub Date]
  45. 45.
    Lavinio A, Schmidt EA, Haubrich C et al (2007) Noninvasive evaluation of dynamic cerebrovascular autoregulation using Finapres plethysmograph and transcranial Doppler. Stroke 38(2):402–404. doi: 10.1161/01.STR.0000254551.92209.5c [published Online First: Epub Date]
  46. 46.
    Ercole A, Gupta AK (2011) Cerebral oxygenation. In: Basil F, Matta DKM, Smith M (eds) Core topics in neuroanaesthesia and neurointensive care. Cambridge University Press, CambridgeGoogle Scholar
  47. 47.
    Brady KM, Lee JK, Kibler KK et al (2008) Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke 39(9):2531–2537. doi: 10.1161/STROKEAHA.108.514877 [published Online First: Epub Date]
  48. 48.
    Brady KM, Lee JK, Kibler KK et al (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38(10):2818–2825. doi: 10.1161/STROKEAHA.107.485706 [published Online First: Epub Date]
  49. 49.
    Lee JK, Kibler KK, Benni PB et al (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40(5):1820–1866. doi: 10.1161/STROKEAHA.108.536094 [published Online First: Epub Date]
  50. 50.
    Miller JD, Garibi J, Pickard JD (1973) Induced changes of cerebrospinal fluid volume: effects during continuous monitoring of ventricular fluid pressure. Arch Neurol 28(4):265–269CrossRefPubMedGoogle Scholar
  51. 51.
    Ryder HW, Espey FF, Kimbell FD et al (1953) The mechanism of the change in cerebrospinal fluid pressure following an induced change in the volume of the fluid space. J Lab Clin Med 41(3):428–435PubMedGoogle Scholar
  52. 52.
    Shulman K, Marmarou A (1971) Pressure‐volume considerations in infantile hydrocephalus. Dev Med Child Neurol 13(s25):90–95Google Scholar
  53. 53.
    Raabe A, Czosnyka M, Piper I et al (1999) Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir 141(1):31–36CrossRefPubMedGoogle Scholar
  54. 54.
    Piper I, Spiegelberg A, Whittle I et al (1999) A comparative study of the Spiegelberg compliance device with a manual volume-injection method: a clinical evaluation in patients with hydrocephalus. Br J Neurosurg 13(6):581–586CrossRefPubMedGoogle Scholar
  55. 55.
    Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59(5):817–821CrossRefPubMedGoogle Scholar
  56. 56.
    Novák D, Cuesta-Frau D, Aboy M, et al (2004) Clustering of intracranial pressure using hidden Markov models. In: 17th European meetings on cybernetics and systems research, Vienna, 13–16 April 2004Google Scholar
  57. 57.
    Kirkness CJ, Mitchell PH, Burr RL et al (2000) Intracranial pressure waveform analysis: clinical and research implications. J Neurosci Nurs 32(5):271–277CrossRefPubMedGoogle Scholar
  58. 58.
    Robertson CS, Narayan RK, Contant CF et al (1989) Clinical experience with a continuous monitor of intracranial compliance. J Neurosurg 71(5):673–680CrossRefPubMedGoogle Scholar
  59. 59.
    Ross N, Eynon C (2005) Intracranial pressure monitoring. Curr Anaesth Crit Care 16(4):255–261CrossRefGoogle Scholar
  60. 60.
    Balédent O, Gondry-Jouet C, Meyer M-E et al (2004) Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Investig Radiol 39(1):45–55CrossRefGoogle Scholar
  61. 61.
    Strik C, Klose U, Erb M et al (2002) Intracranial oscillations of cerebrospinal fluid and blood flows: analysis with magnetic resonance imaging. J Magn Reson Imaging 15(3):251–258CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Brain and Cognitive EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations