Skip to main content

Abstract

During the past years, breeding programs for aquaculture have shown fast development. Globally, economically highly relevant species have experienced implementation of large scale breeding programs and it is impossible to imagine life today without them as they significantly improve production and profitability of enterprises. However, there are still many aquatic species cultured that rely on wild broodstock and for which there is no breeding program. The reasons for not having breeding programs are diverse: the knowledge to execute a breeding program is often not available, and more importantly, breeding programs are considered expensive. Costs for separate family rearing systems, testing environments, extensive tagging etc. are often limiting.

Farming of percids is a new sector where pioneering farmers have to develop rearing systems, reproduction methodology, fish feeds, etc., all at the same time. Especially in such cases, low-cost methods are required to get their business up and running. For this reason, many farms consider the foundation of a basic breeding program as their least concern, only to reduce costs. However, we argue that there are good reasons to start with selective breeding at the very start of an aquaculture enterprise.

In the next chapters, the principles of selective breeding programs will be described. This includes a basic description of the concept of estimating the heritable components of the phenotypic appearance of fish. Next the most commonly used selection methods and their implication for percids will be discussed. The potential traits for selection that should be relevant in percid culture are reviewed. Some insights into the optimisation of breeding programs and an overview of basic breeding program management will be presented. We present an outline of how to maintain genetic diversity within cultured stocks, with a special focus on limiting rates of inbreeding while selecting. Finally, some insights on how to manage costs and benefits of breeding programs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonello J, Massault C, Franch R, Haley C, Pellizzari C, Bovo G, Patarnello T, de Koning D-J, Bargelloni L (2009) Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298:29–35. doi:10.1016/j.aquaculture.2009.10.022

    Article  Google Scholar 

  • Baras E, Kestemont P, Mélard C (2003) Effect of stocking density on the dynamics of cannibalism in sibling larvae of Perca fluviatilis under controlled conditions. Aquaculture 219:241–255. doi:10.1016/S0044-8486(02)00349-6

    Article  Google Scholar 

  • Bentsen HB, Olesen I (2002) Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture 204:349–359

    Article  Google Scholar 

  • Bijma P, Muir WM, van Arendonk JAM (2007) Multilevel selection 1: quantitative genetics of inheritance and response to selection. Genetics 175:277–288. doi:10.1534/genetics.106.062711

    Article  Google Scholar 

  • Björklund M, Aho T, Larsson LC (2007) Genetic differentiation in pikeperch (Sander lucioperca): the relative importance of gene flow, drift and common history. J Fish Biol 71:264–278. doi:10.1111/j.1095-8649.2007.01609.x

    Article  Google Scholar 

  • Blonk RJW (2010) Selecting sole: breeding programs for natural – mating populations. PhD thesis, Wageningen University

    Google Scholar 

  • Blonk RJW, Komen J, Kamstra A, Crooijmans RPMA, van Arendonk JAM (2009) Levels of inbreeding in group mating captive broodstock populations of common sole, (Solea solea), inferred from parental relatedness and contribution. Aquaculture 289:26–31

    Article  Google Scholar 

  • Blonk RJW, Komen H, Kamstra A, van Arendonk JAM (2010a) Estimating breeding values with molecular relatedness and reconstructed pedigrees in natural mating populations of common sole, Solea solea. Genetics 184:1–7

    Article  Google Scholar 

  • Blonk RJW, Komen H, Kamstra A, van Arendonk JAM (2010b) Effects of grading on heritability estimates under commercial conditions: a case study with common sole, Solea solea. Aquaculture 300:43–49

    Article  Google Scholar 

  • Blonk RJW, Komen J, Tenghe A, Kamstra A, van Arendonk JAM (2010c) Heritability of shape in common sole, Solea solea, estimated from image analysis data. Aquaculture 307:6–11

    Article  Google Scholar 

  • Brabrand A (1995) Intra-cohort cannibalism among larval stages of perch (Perca fluviatilis). Ecol Freshw Fish 4:70–76. doi:10.1111/j.1600-0633.1995.tb00119.x

    Article  Google Scholar 

  • Cao XJ, Wang HP, Yao H, O’Bryant P, Rapp D, Wang WM, MacDonald R (2012) Evaluation of 1-stage and 2-stage selection in yellow perch I: genetic and phenotypic parameters for body weight of F1 fish reared in ponds using microsatellite parentage assignment. J Anim Sci 90:27–36. doi:10.2527/jas.2011-3902

    Article  CAS  Google Scholar 

  • Chavanne H, Norris A, Haffray P, Sonesson AK, Vandeputte M, Chatain B, Boudry P (2008) Survey on the breeding practices in the European aquaculture industry. Reprofish Aquabreeding Workshop 2008. https://aquatrace.eu/questionnaire-portlet/reports/AquaBreedingSurvey_2009-1.pdf

  • Chevassus B, Quillet E, Krieg F, Hollebecq MG, Mambrini M, Faure A, Labbe L, Hiseux JP, Vandeputte M (2004) Enhanced individual selection for selecting fast growing fish: the “PROSPER” method, with application on brown trout (Salmo trutta fario). Genet Sel Evol 36:643–661

    Article  Google Scholar 

  • Domingos JA, Smith-Keune C, Robinson N, Loughnan S, Harrison P, Jerry DR (2013) Heritability of harvest growth traits and genotype–environment interactions in barramundi, Lates calcarifer (Bloch). Aquaculture 402–403:66–75. doi:10.1016/j.aquaculture.2013.03.029

    Article  Google Scholar 

  • Doyle RW, Talbot AJ (1986) Artificial selection on growth and correlated selection on competitive behaviour in fish. Can J Fish Aquat Sci 43:1059–1064. doi:10.1139/f86-132

    Article  Google Scholar 

  • Duchesne P, Godbout MH, Bernatchez L (2002) PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Mol Ecol Notes 2:191–194

    Article  CAS  Google Scholar 

  • Dupont-Nivet M, Vandeputte M, Chevassus B (2002) Optimization of factorial mating designs for inference on heritability in fish species. Aquaculture 204:361–370. doi:10.1016/S0044-8486(01)00839-0

    Article  Google Scholar 

  • Dupont-Nivet M, Vandeputte M, Haffray P, Chevassus B (2006) Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs. Aquaculture 252:161–170

    Article  Google Scholar 

  • Dupont-Nivet M, Vandeputte M, Vergnet A, Merdy O, Haffray P, Chavanne H, Chatain B (2008) Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 275:81–87. doi:10.1016/j.aquaculture.2007.12.032

    Article  CAS  Google Scholar 

  • Ellen ED, Visscher J, van Arendonk JAM, Bijma P (2008) Survival of laying hens: genetic parameters for direct and associative effects in three purebred layer lines. Poult Sci 87:233–239. doi:10.3382/ps.2007-00374

    Article  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Pearson Prentice Hall Harlow, Essex

    Google Scholar 

  • Fessehaye Y, Kabir A, Bovenhuis H, Komen H (2006a) Prediction of cannibalism in juvenile Oreochromis niloticus based on predator to prey weight ratio, and effects of age and stocking density. Aquaculture 255:314–322

    Article  Google Scholar 

  • Fessehaye Y, El-Bialy Z, Rezk MA, Crooijmans R, Bovenhuis H, Komen H (2006b) Mating systems and male reproductive success in Nile tilapia (Oreochromis niloticus) in breeding hapas: a microsatellite analysis. Aquaculture 256:148–158

    Article  Google Scholar 

  • Fessehaye Y, Komen H, Kezk MA, van Arendonk JAM, Bovenhuis H (2007) Effects of inbreeding on survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquaculture 264:27–35. doi:10.1016/j.aquaculture.2006.12.038

    Article  Google Scholar 

  • Fessehaye Y, Bovenhuis H, Rezk MA, Crooijmans R, van Arendonk JAM, Komen H (2009) Effects of relatedness and inbreeding on reproductive success of Nile tilapia (Oreochromis niloticus). Aquaculture 294:180–186. doi:10.1016/j.aquaculture.2009.06.001

    Article  Google Scholar 

  • Fleming IA, Agustsson T, Finstad B, Johnsson JI, Björnsson BT (2002) Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 59:1323–1330. doi:10.1139/f02-082

    Article  CAS  Google Scholar 

  • Frommen JG (2008) Inbreeding depression affects fertilization success and survival but not breeding coloration in threespine sticklebacks. Behaviour 145:425–441

    Article  Google Scholar 

  • Gallardo J (2004) Inbreeding and inbreeding depression of female reproductive traits in two populations of Coho salmon selected using BLUP predictors of breeding values. Aquaculture 234:111–122

    Article  Google Scholar 

  • Gjedrem T (2000) Genetic improvement of cold-water fish species. Aquacult Res 31:25–33. doi:10.1046/j.1365-2109.2000.00389.x

    Article  Google Scholar 

  • Gjedrem T, Gjøen HM (1995) Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquacult Res 26:129–134. doi:10.1111/j.1365-2109.1995.tb00892.x

    Article  Google Scholar 

  • Gjerde B, Gunnes K, Gjedrem T (1983) Effect of inbreeding on survival and growth in rainbow trout. Aquaculture 34:327–332. doi:10.1016/0044-8486(83)90212-0

    Article  Google Scholar 

  • Haffray P, Pincent C, Rault P, Coudurier B (2004) Domestication and genetic improvement of French fish farmed broodstocks in SYSAAF. Prod Anim 17:243–252

    Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60. doi:10.1017/S0016672308009981

    Article  CAS  Google Scholar 

  • Hecht T, Pienaar AG (1993) A review of cannibalism and its implications in fish larviculture. J World Aquacult Soc 24:246–261. doi:10.1111/j.1749-7345.1993.tb00014.x

    Article  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. Guelph University Press, Guelph

    Google Scholar 

  • Hinrichs D, Wetten M, Meuwissen THE (2006) An algorithm to compute optimal genetic contributions in selection programs with large numbers of candidates. J Anim Sci 84:3212–3218. doi:10.2527/jas.2006-145

    Article  CAS  Google Scholar 

  • Hulata G, Wohlfarth GW, Halevy A (1986) Mass selection for growth rate in the Nile tilapia (Oreochromis niloticus). Aquaculture 57:177–184. doi:10.1016/0044-8486(86)90195-X

    Article  Google Scholar 

  • Kause A, Ritola O, Paananen T, Eskelinen U, Mantysaari E (2003) Big and beautiful? Quantitative genetic parameters for appearance of large rainbow trout. J Fish Biol 62:610–622. doi:10.1046/j.0022-1112.2003.00051.x

    Article  Google Scholar 

  • Kause A, Ritola O, Paananen T (2004) Breeding for improved appearance of large rainbow trout in two production environments. Aquacult Res 35:924–930

    Article  Google Scholar 

  • Kause A, Tobin D, Houlihan DF, Martin SAM, Mantysaari EA, Ritola O, Ruohonen K (2006) Feed efficiency of rainbow trout can be improved through selection: different genetic potential on alternative diets. J Anim Sci 84:807–817

    CAS  Google Scholar 

  • Kestemont P, Jourdan S, Houbart M, Mélard C, Paspatis M, Fontaine P, Cuvier A, Kentouri M, Baras E (2003) Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: biotic and abiotic influences. Aquaculture 227:333–356. doi:10.1016/S0044-8486(03)00513-1

    Article  Google Scholar 

  • Kohlmann K, Kersten P (2008) Isolation and characterization of nine microsatellite loci from the pike-perch, Sander lucioperca (Linnaeus, 1758). Mol Ecol Resour 8:1085–1087. doi:10.1111/j.1755-0998.2008.02166.x

    Article  CAS  Google Scholar 

  • Komen J, Wiegertjes GF, van Ginneken VJT, Eding EH, Richter CJJ (1992) Gynogenesis in common carp (Cyprinus carpio L.). III. The effects of inbreeding on gonadal development of heterozygous and homozygous gynogenetic offspring. Aquaculture 104:51–66. doi:10.1016/0044-8486(92)90137-A

    Article  Google Scholar 

  • Lappalainen J, Erm V, Kjellman J, Lehtonen H (2000) Size-dependent winter mortality of age-0 pikeperch (Stizostedion lucioperca) in Pärnu Bay, the Baltic Sea. Can J Fish Aquat Sci 57:451–458. doi:10.1139/f99-270

    Article  Google Scholar 

  • Lepage O, Overli O, Petersson E, Jarvi T, Winberg S (2000) Differential stress coping in wild and domesticated sea trout. Brain Behav Evol 56:259–268

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetic and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  Google Scholar 

  • Meuwissen THE (2002) GENCONT: an operational tool fo controlling inbreeding in selection and conservation schemes. In: Proceedings of the 7th World Congress on genetics applied to livestock production, Montpellier, 33, pp 769–770

    Google Scholar 

  • Meuwissen T (2007) Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Gen 124:321–322. doi:10.1111/j.1439-0388.2007.00708.x

    Article  Google Scholar 

  • Meyer S, Teerlinck S, Policar T, Toner D (2012) European percid fish culture (EPFC) – Workshop 2012 summary

    Google Scholar 

  • Moen T, Baranski M, Sonesson AK, Kjoglum S (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10:368. doi:10.1186/1471-2164-10-368

    Article  Google Scholar 

  • Monsen BB, Ødegård J, Arnesen KR, Toften H, Nielsen HM, Damsgård B, Bijma P, Olesen I (2010) Genetics of social interactions in Atlantic cod (Gadus morhua). 9th World Congress on genetics applied to livestock production (WCGALP), Leipzig

    Google Scholar 

  • Mrode RA (2005) Linear models for the prediction of animal breeding values. CABI, Wallingford

    Book  Google Scholar 

  • Mulder HA (2007) Methods to optimize livestock breeding programs with genotype by environment interaction and genetic heterogeneity of environmental variance. PhD thesis, Wageningen University

    Google Scholar 

  • Neira R (2010) Breeding in aquaculture species: genetic improvement programs in developing countries. 9th World Congress on genetics applied to livestock production (WCGALP), Leipzig

    Google Scholar 

  • Neira R, Diaz NF, Gall GAE, Gallardo JA, Lhorente JP, Alert A (2006) Genetic improvement in coho salmon (Oncorhynchus kisutch). II: selection response for early spawning date. Aquaculture 257:1–8. doi:10.1016/j.aquaculture.2006.03.001

    Article  Google Scholar 

  • Nesbø CL, Fossheim T, Vøllestad LA, Jakobsen KS (1999) Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Mol Ecol 8:1387–1404. doi:10.1046/j.1365-294x.1999.00699.x

    Article  Google Scholar 

  • Olesen I, Gjedrem T, Bentsen HB, Gjerde B, Rye M (2003) Breeding programs for sustainable aquaculture. J Appl Aquacult 13:179–204

    Article  Google Scholar 

  • Ponzoni RW, Nguyen NH, Khaw HL (2007) Investment appraisal of genetic improvement programs in Nile tilapia (Oreochromis niloticus). Aquaculture 269:187–199. doi:10.1016/j.aquaculture.2007.04.054

    Article  Google Scholar 

  • Quinton CD, Kause A, Koskela J, Ritola O (2007) Breeding salmonids for feed efficiency in current fishmeal and future plant-based diet environments. Genet Sel Evol 39:431–446. doi:10.1051/gse:2007013

    Article  CAS  Google Scholar 

  • Rónyai A (2007) Induced out-of-season and seasonal tank spawning and stripping of pike perch (Sander lucioperca L.). Aquacult Res 38:1144–1151. doi:10.1111/j.1365-2109.2007.01778.x

    Article  Google Scholar 

  • Rutten MJM (2005) Breeding for improved production of Nile tilapia (Oreochromis niloticus L.). PhD thesis, Wageningen University

    Google Scholar 

  • Rutten MJM, Bijma P, Woolliams JA, van Arendonk JAM (2002) SelAction: software to predict selection response and rate of inbreeding in livestock breeding programs. J Hered 93:456–458. doi:10.1093/jhered/93.6.456

    Article  CAS  Google Scholar 

  • Rutten MJM, Bovenhuis H, Komen H (2004) Modeling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus L.). Aquaculture 231:113–122. doi:10.1016/j.aquaculture.2003.11.002

    Article  Google Scholar 

  • Rutten MJM, Bovenhuis H, Komen H (2005) Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture 246:125–132

    Article  Google Scholar 

  • Ruzzante DE, Doyle RW (1991) Rapid behavioral-changes in Medaka (Oryzias-Latipes) caused by selection for competitive and noncompetitive growth. Evolution 45:1936–1946. doi:10.2307/2409841

    Article  Google Scholar 

  • Rye M, Gjerde B (1996) Phenotypic and genetic parameters of body composition traits and flesh colour in Atlantic salmon, Salmo salar L. Aquacult Res 27:121–133. doi:10.1111/j.1365-2109.1996.tb00976.x

    Article  Google Scholar 

  • Rye M, Gjerde B and Gjedrem T (2010) Genetic improvement programs for aquaculture species in developed countries. 9th World Congress on genetics applied to livestock production (WCGALP), Leipzig

    Google Scholar 

  • Sae-Lim P, Komen H, Kause A (2010) Bias and precision of estimates of genotype-by-environment interaction: a simulation study. Aquaculture 310:66–73. doi:10.1016/j.aquaculture.2010.10.020

    Article  Google Scholar 

  • Sae-Lim P, Komen H, Kause A, Martin KE, Crooijmans R, van Arendonk JAM, Parsons JE (2013) Enhancing selective breeding for growth, slaughter traits and overall survival in rainbow trout (Oncorhynchus mykiss). Aquaculture 372:89–96. doi:10.1016/j.aquaculture.2012.10.031

    Article  Google Scholar 

  • Saillant E, Ma L, Wang XX, Gatlin DM, Gold JR (2007) Heritability of juvenile growth traits in red drum (Sciaenops ocellatus L.). Aquacult Res 38:781–788

    Article  Google Scholar 

  • Säisä M, Salminen M, Koljonen M-L, Ruuhijärvi J (2010) Coastal and freshwater pikeperch (Sander lucioperca) populations differ genetically in the Baltic Sea basin. Hereditas 147:205–214. doi:10.1111/j.1601-5223.2010.02184.x

    Article  Google Scholar 

  • Smith C, Reay P (1991) Cannibalism in teleost fish. Rev Fish Biol Fish 1:41–64. doi:10.1007/bf00042661

    Article  Google Scholar 

  • Sonesson AAK (2005) A combination of walk-back and optimum contribution selection in fish: a simulation study. Genet Sel Evol 37:587–599

    Article  Google Scholar 

  • Sonesson A, Meuwissen T (2009) Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol 41:37

    Article  Google Scholar 

  • Sorensen A, Berg P, Woolliams J (2005) The advantage of factorial mating under selection is uncovered by deterministically predicted rates of inbreeding. Genet Sel Evol 37:57–81

    Article  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Sepulveda-Villet OJ, Haponski AE (2009) Signatures of vicariance, postglacial dispersal and spawning philopatry: population genetics of the walleye Sander vitreus. Mol Ecol 18:3411–3428. doi:10.1111/j.1365-294X.2009.04291.x

    Article  CAS  Google Scholar 

  • Taggart JB (2007) FAP: an exclusion-based parental assignment program with enhanced predictive functions. Mol Ecol Notes 7:412–415

    Article  CAS  Google Scholar 

  • Thodesen Da-Yong Ma J, Rye M, Wang Y-X, Bentsen HB, Gjedrem T (2012) Genetic improvement of tilapias in China: genetic parameters and selection responses in fillet traits of Nile tilapia (Oreochromis niloticus) after six generations of multi-trait selection for growth and fillet yield. Aquaculture 366–367:67–75. doi:10.1016/j.aquaculture.2012.08.028

    Article  Google Scholar 

  • Trọng TQ, van Arendonk JAM, Komen H (2013a) Genetic parameters for reproductive traits in female Nile tilapia (Oreochromis niloticus): I. Spawning success and time to spawn. Aquaculture 416–417:57–64. doi:10.1016/j.aquaculture.2013.08.032

    Article  Google Scholar 

  • Trọng TQ, van Arendonk JAM, Komen H (2013b) Genetic parameters for reproductive traits in female Nile tilapia (Oreochromis niloticus): II. Fecundity and fertility. Aquaculture 416–417:72–77. doi:10.1016/j.aquaculture.2013.08.031

    Article  Google Scholar 

  • Trọng TQ, Mulder HA, van Arendonk JAM, Komen H (2013c) Heritability and genotype by environment interaction estimates for harvest weight, growth rate, and shape of Nile tilapia (Oreochromis niloticus) grown in river cage and VAC in Vietnam. Aquaculture 384–387:119–127. doi:10.1016/j.aquaculture.2012.12.022

    Article  Google Scholar 

  • van Duijn AP, van der Mheen H, Blonk RJW, Beukers R (2010) Actieplan visteelt. Landbouw Economisch Instituut, part of Wageningen UR, The Hague

    Google Scholar 

  • Vandeputte M, Kocour M, Mauger S, Dupont-Nivet M, De Guerry D, Rodina M, Gela D, Vallod D, Chevassus B, Linhart O (2004) Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture 235:223–236

    Article  CAS  Google Scholar 

  • Vandeputte M, Mauger S, Dupont-Nivet M (2006) An evaluation of allowing for mismatches as a way to manage genotyping errors in parentage assignment by exclusion. Mol Ecol Notes 6:265–267. doi:10.1111/j.1471-8286.2005.01167.x

    Article  Google Scholar 

  • Vandeputte M, Kocour M, Mauger S, Rodina M, Launay A, Gela D, Dupont-Nivet M, Hulak M, Linhart O (2008) Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): heritability estimates and response to selection. Aquaculture 277:7–13

    Article  Google Scholar 

  • Villanueva B, Woolliams JA, Gjerde B (1996) Optimum designs for breeding programmes under mass selection with an application in fish breeding. Anim Sci 63:563–576. doi:10.1017/S1357729800015459

    Article  Google Scholar 

  • Wilson AJ, McDonald (2003) Marker-assisted estimation of quantitative genetic parameters in rainbow trout, Oncorhynchus mykiss. Genet Res 81:145–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. W. Blonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blonk, R.J.W., Komen, J. (2015). Genetic Improvement of Percids. In: Kestemont, P., Dabrowski, K., Summerfelt, R. (eds) Biology and Culture of Percid Fishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7227-3_27

Download citation

Publish with us

Policies and ethics