Skip to main content

Effect of Concentration on the Interactions of Gold Nanoparticles with Model Cell Membranes: A QCM-D Study

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

The increasing applications of nanotechnology in everyday life require consideration of their interactions with living cells. There are different physical and chemical properties affecting the interactions of nanoparticles with cells, such as NP size, nature of functionalization or stabilizing groups, concentration, and the environment in which nanoparticles are interacting with cells. In this review, we summarize some of our previous studies done on the interactions of gold nanoparticles with supported lipid bilayers (SLB; models for cell membranes). These studies have been done via Quartz Crystal Microbalance with Dissipation (QCM-D) and they include NPs ranging in size from 2 to 40 nm at several concentrations. Their interactions with a SLB composed of l-α-phosphatidylcholine were characterized. In order to better understand how NPs behave in the environment, these interactions were also studied in the presence of different types of natural organic matter (NOM), including Aldrich humic acid, Suwannee River humic acid standard, Suwannee River fulvic acid standard, and Elliot soil humic acid. Here we review our previous findings while focusing on an example of the effect of concentration on NP-SLB interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater (Deerfield Beach, Fla) 23(12):H18–H40. doi:10.1002/adma.201100140

    Article  Google Scholar 

  2. Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463(1–3):145–149. doi:10.1016/j.cplett.2008.08.039

    Article  Google Scholar 

  3. Yen H-J, Hsu S-H, Tsai C-L (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim an Der Bergstrasse, Germany) 5(13):1553–1561. doi:10.1002/smll.200900126

    Article  Google Scholar 

  4. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. doi:10.1038/nmat2442

    Article  Google Scholar 

  5. Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C, Janshoff A (2011) Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5(2):254–268. doi:10.3109/17435390.2010.528847

    Article  Google Scholar 

  6. Hou W-C, Moghadam BY, Corredor C, Westerhoff P, Posner JD (2012) Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. Environ Sci Technol 46(3):1869–1876. doi:10.1021/es203661k

    Article  Google Scholar 

  7. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small (Weinheim an Der Bergstrasse, Germany) 3(11):1941–1949. doi:10.1002/smll.200700378

    Article  Google Scholar 

  8. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4(1):120–137. doi:10.3109/17435390903471463

    Article  Google Scholar 

  9. Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257. doi:10.1016/j.watres.2009.06.005

    Article  Google Scholar 

  10. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900. doi:10.1021/bc049951i

    Article  Google Scholar 

  11. Stankus DP, Lohse SE, Hutchison JE, Nason J (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244. doi:10.1021/es102603p

    Article  Google Scholar 

  12. Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Crit Rev 510:9009–9015

    Google Scholar 

  13. Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18(5):448–458. doi:10.1016/j.cocis.2013.06.004

    Article  Google Scholar 

  14. McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J : EBJ 40(4):437–446. doi:10.1007/s00249-010-0652-5

    Article  Google Scholar 

  15. Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson RD (1977) A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12):2806–2810, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/889789

  16. Keller CA, Glasmästar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84(23):5443–5446, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10990964

  17. Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem 291:2554–2559

    Article  Google Scholar 

  18. Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93(11):3907–3916. doi:10.1529/biophysj.107.116525

    Article  Google Scholar 

  19. Richter RP, Brisson AR (2005) Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88(5):3422–3433. doi:10.1529/biophysj.104.053728

    Article  Google Scholar 

  20. Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19:151–158

    Google Scholar 

  21. Furman O, Usenko S, Lau BLT (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ Sci Technol 47(3):1349–1356. doi:10.1021/es303275g

    Google Scholar 

  22. Vogt BD, Lin EK, Wu W, White CC (2004) Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J Phys Chem B 108:12685–12690

    Article  Google Scholar 

  23. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit: JEM 13(5):1145–1155. doi:10.1039/c0em00547a

    Article  Google Scholar 

  24. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small (Weinheim an Der Bergstrasse, Germany) 4(1):26–49. doi:10.1002/smll.200700595

    Article  Google Scholar 

  25. Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Zink JI (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5(1):13–20. doi:10.1021/nn1034857

    Article  Google Scholar 

  26. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: A multiparametric study. ACS Nano 7:5767–5783

    Article  Google Scholar 

  27. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson K, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444. doi:10.1021/ja309812z

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (CBET 0966496). For help with concentration experiments, the authors thank Jeniece Macedonio for her contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terri A. Camesano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kamaloo, E., Bailey, C., Camesano, T.A. (2015). Effect of Concentration on the Interactions of Gold Nanoparticles with Model Cell Membranes: A QCM-D Study. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_5

Download citation

Publish with us

Policies and ethics