Skip to main content

The Actual Role of Receptors as Cancer Markers, Biochemical and Clinical Aspects: Receptors in Breast Cancer

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 867))

Abstract

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The discovery and development of proper biomarkers is a critical part of modern oncology. Among the many different types of biomarkers, cell receptors have demonstrated important roles as diagnostic, prognostic, and predictive biomarkers in cancer research and therapy, leading to their integration into drug development trials. In breast cancer, Estrogen/Progesterone receptors and HER2/neu receptors are two good examples of biomarkers that are prognostic of outcomes, as well as predictive of response to certain therapies. Limitations exist, however, such as the invasive procedures required obtaining tissue, and the difficulty measuring the actual distribution of the receptors. Thus, continued efforts to develop receptors as comprehensive cancer biomarkers with novel approaches is mandated to further advance the modern oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    Article  PubMed Central  PubMed  Google Scholar 

  2. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580

    Article  CAS  PubMed  Google Scholar 

  3. Atkinson A et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  4. Quintas-Cardama A, Cortes J (2006) Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc 81:973–988

    Article  CAS  PubMed  Google Scholar 

  5. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  6. Fasola G et al (1984) Serum LDH concentration in non-Hodgkin’s lymphomas. Relationship to histologic type, tumor mass, and presentation features. Acta Haematol 72:231–238

    Article  CAS  PubMed  Google Scholar 

  7. Levis M, Small D (2003) FLT3: It does matter in leukemia. Leukemia 17:1738–1752

    Article  CAS  PubMed  Google Scholar 

  8. Italiano A (2011) Prognostic or predictive? It’s time to get back to definitions! J Clin Oncol 29:4718

    Article  PubMed  Google Scholar 

  9. De Vita F et al (2010) Human epidermal growth factor receptor 2 (HER2) in gastric cancer: a new therapeutic target. Cancer Treat Rev 36(Suppl 3):S11–S15

    Article  PubMed  Google Scholar 

  10. Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44:946–953

    Article  CAS  PubMed  Google Scholar 

  11. Sarker D, Workman P (2007) Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res 96:213–268

    Article  CAS  PubMed  Google Scholar 

  12. Pan Y et al (2011) Evaluation of pharmacodynamic biomarkers in a Phase 1a trial of dulanermin (rhApo2L/TRAIL) in patients with advanced tumours. Br J Cancer 105:1830–1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mandrekar SJ, Sargent DJ (2010) Predictive biomarker validation in practice: lessons from real trials. Clin Trials 7:567–573

    Google Scholar 

  14. Floyd E, McShane TM (2004) Development and use of biomarkers in oncology drug development. Toxicol Pathol 32(Suppl 1):106–115

    Article  CAS  PubMed  Google Scholar 

  15. Beketic-Oreskovic L, Maric P, Ozretic P et al (2012) Assessing the clinical significance of tumor markers in common neoplasms. Front Biosci 4:2558–2578

    Article  Google Scholar 

  16. Khleif SN, Doroshow JH, Hait WN (2010) AACR-FDA-NCI cancer biomarkers collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res 16:3299

    Article  CAS  PubMed  Google Scholar 

  17. Butler D (2008) Translational research: crossing the valley of death. Nat News 453:840–842

    Article  CAS  Google Scholar 

  18. Sistare FD et al (2010) Towards consensus practices to qualify safety biomarkers for use in early drug development. Nat Biotechnol 28:446–454

    Article  CAS  PubMed  Google Scholar 

  19. Ferber G (2002) Biomarkers and proof of concept. Methods Find Exp Clin Pharmacol 24(Suppl C):35–40

    PubMed  Google Scholar 

  20. Beckman RA, Clark J, Chen C (2011) Integrating predictive biomarkers and classifiers into oncology clinical development programmes. Nat Rev Drug Discov 10:735–748

    Article  CAS  PubMed  Google Scholar 

  21. Pagana KD, Pagana TJ (2014) Mosby’s manual of diagnostic and laboratory tests. Elsevier, St. Louis

    Google Scholar 

  22. Brown R, Campagna L, Dunn J, Cagle P (1997) Immunohistochemical identification of tumor markers in metastatic adenocarcinoma: a diagnostic adjunct in the determination of primary site. Am J Clin Pathol 107:12–19

    CAS  PubMed  Google Scholar 

  23. Voduc K et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  PubMed  Google Scholar 

  24. Fox SB et al (1994) The epidermal growth factor receptor as a prognostic marker: results of 370 patients and review of 3009 patients. Breast Cancer Res Treat 29:41–49

    Article  CAS  PubMed  Google Scholar 

  25. Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:9–15

    Article  Google Scholar 

  26. Selvaggi G et al. (2004) Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 15:28–32

    Google Scholar 

  27. Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 17:245–262

    Article  CAS  Google Scholar 

  28. Crowley E, Nicolantonio FD, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484

    Article  CAS  PubMed  Google Scholar 

  29. Akca H et al (2013) Utility of serum DNA and pyrosequencing for the detection of EGFR mutations in non-small cell lung cancer. Cancer Genet 206:73–80

    Article  CAS  PubMed  Google Scholar 

  30. Kim H-R et al (2013) Detection of EGFR mutations in circulating free DNA by PNA-mediated PCR clamping. J Exp Clin Cancer Res 32:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fehm T et al (2007) Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res 9:R74

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Loo L et al (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mortimer J et al (2012) Functional imaging of HER2-positive metastatic breast cancer using 64Cu DOTA-trastuzumab positron emission tomography (PET). Mortimer et al. 30(15):639 -- ASCO meeting abstracts. J Clin Oncol 30:639

    Google Scholar 

  34. Baum RP et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  35. Paik S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol 24 15:28–32

    Google Scholar 

  36. Stanford JL, Szklo M, Brinton LA (1986) Estrogen receptors and breast cancer. Epidemiol Rev 8:42–59

    CAS  PubMed  Google Scholar 

  37. Althuis MD et al (2004) Etiology of hormone receptor–defined breast cancer: a systematic review of the literature Cancer Epidemiol Biomarkers Prev. 13:1558–1568

    Google Scholar 

  38. Miller K (2003) Estrogen and DNA damage: the silent source of breast cancer? J Natl Cancer Inst 95:100–102

    Google Scholar 

  39. Dunnwald LK, Rossing MA, Li CI (2007) Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 9:R6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Swain SM et al (2004) Estrogen receptor status of primary breast cancer is predictive of estrogen receptor status of contralateral breast cancer. J Natl Cancer Inst 96:516–523

    Article  CAS  PubMed  Google Scholar 

  41. Duffy MJ (2006) Estrogen receptors: role in breast cancer. Crit Rev Clin Lab Sci 43:325–347

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi SI et al (2003) The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr Relat Cancer 10:193–202

    Article  CAS  PubMed  Google Scholar 

  43. Wang M et al (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296:R972–R978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Park S, Song J, Joe CO, Shin I (2008) Akt stabilizes estrogen receptor alpha with the concomitant reduction in its transcriptional activity. Cell Signal 20:1368–1374

    Article  CAS  PubMed  Google Scholar 

  45. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase – AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  46. Fuqua SAW et al (2003) Estrogen receptor β protein in human breast cancer: correlation with clinical tumor parameters. Cancer Res. 63:2434–2439

    Google Scholar 

  47. Mangelsdorf D et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  48. Olivotto IA et al (2004) Time to stop progesterone receptor testing in breast cancer management. J Clin Oncol 22:1769–1770

    Article  PubMed  Google Scholar 

  49. Colozza M, Larsimont D, Piccart MJ (2005) Progesterone receptor testing: not the right time to be buried. J Clin Oncol 23:3867–3868; author reply 3869–3870

    Article  CAS  PubMed  Google Scholar 

  50. Fuqua SAW, Cui Y, Lee AV, Osborne CK, Horwitz KB (2005) Insights into the role of progesterone receptors in breast cancer. J Clin Oncol 23:931–932

    Article  PubMed  Google Scholar 

  51. Osborne CK, Yochmowitz MG, Knight WA 3rd, McGuire WL (1980) The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46:2884–2888

    Article  CAS  PubMed  Google Scholar 

  52. Mohsin SK et al (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17:1545–1554

    Article  CAS  PubMed  Google Scholar 

  53. Biswas DK, Cruz AP, Pardee AB (2000) Detection of the level of estrogen receptor and functional variants in human breast cancers by novel assays. Biotechniques 29(1056–1060):1062–1054

    Google Scholar 

  54. Claassen H et al (2001) Immunohistochemical detection of estrogen receptor alpha in articular chondrocytes from cows, pigs and humans: in situ and in vitro results. Ann Anat 183:223–227

    Article  CAS  PubMed  Google Scholar 

  55. Hanley KZ, Birdsong GG, Cohen C, Siddiqui MT (2009) Immunohistochemical detection of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast carcinomas: comparison on cell block, needle-core, and tissue block preparations. Cancer 117:279–288

    PubMed  Google Scholar 

  56. Reisenbichler ES et al (2013) Interobserver concordance in implementing the 2010 ASCO/CAP recommendations for reporting ER in breast carcinomas: a demonstration of the difficulties of consistently reporting low levels of ER expression by manual quantification. Am J Clin Pathol 140:487–494

    Article  PubMed  Google Scholar 

  57. Allred DC et al (2009) NCCN task force report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Canc Netw 7(Suppl 6):S1–S21; quiz S22–23

    CAS  PubMed  Google Scholar 

  58. Hammond MEH et al (2010) American society of clinical oncology/college of American Pathologists Guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795

    Article  PubMed Central  PubMed  Google Scholar 

  59. Houghton J et al (2003) Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362:95–102

    Article  PubMed  Google Scholar 

  60. Cummings SR et al (1999) The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the more randomized trial. Multiple outcomes of raloxifene evaluation. JAMA 281:2189–2197

    Article  CAS  PubMed  Google Scholar 

  61. Vogel VG, Costantino JP, Wickerham DL, Cronin WM (2003) National surgical adjuvant breast and bowel project update: prevention trials and endocrine therapy of ductal carcinoma in situ. Clin Cancer Res 9:495s–501s

    CAS  PubMed  Google Scholar 

  62. Perez EA et al (2006) Effect of letrozole versus placebo on bone mineral density in women with primary breast cancer completing 5 or more years of adjuvant tamoxifen: a companion study to NCIC CTG MA.17. J Clin Oncol 24:3629–3635

    Article  CAS  PubMed  Google Scholar 

  63. Dowsett M et al (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28:509–518

    Article  CAS  PubMed  Google Scholar 

  64. van de Velde CJ et al (2011) Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377:321–331

    Article  PubMed  CAS  Google Scholar 

  65. Ingle JN et al (2008) Intent-to-treat analysis of the placebo-controlled trial of letrozole for extended adjuvant therapy in early breast cancer: NCIC CTG MA.17. Ann Oncol 19:877–882

    Article  CAS  PubMed  Google Scholar 

  66. Goss PE et al (2008) Late extended adjuvant treatment with letrozole improves outcome in women with early-stage breast cancer who complete 5 years of tamoxifen. J Clin Oncol 26:1948–1955

    Article  CAS  PubMed  Google Scholar 

  67. Davies C et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Dowsett M et al (2013) Comparison of PAM50 risk of recurrence core with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol 31:29

    Article  Google Scholar 

  69. Ellis MJ et al (2008) Outcome prediction for estrogen receptor–positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. JNCI 100:1380–1388

    Google Scholar 

  70. Mamounas EP et al (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor–positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28:1677–1683

    Article  PubMed Central  PubMed  Google Scholar 

  71. Goldhirsch A et al (2009) Thresholds for therapies: highlights of the St Gallen International Expert consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 30:96–102

    Google Scholar 

  73. Boughey JC et al (2009) Neoadjuvant chemotherapy in invasive lobular carcinoma may not improve rates of breast conservation. Ann Surg Oncol 16:1606–1611

    Article  PubMed Central  PubMed  Google Scholar 

  74. Soucy G et al (2008) Surgical margins in breast-conservation operations for invasive carcinoma: does neoadjuvant chemotherapy have an impact? J Am Coll Surg 206:1116–1121

    Article  PubMed  Google Scholar 

  75. Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97:188–194

    Article  PubMed  Google Scholar 

  76. Fossati R et al (1998) Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J Clin Oncol 16:3439–3460

    CAS  PubMed  Google Scholar 

  77. Kaufmann M et al (1989) Goserelin, a depot gonadotrophin-releasing hormone agonist in the treatment of premenopausal patients with metastatic breast cancer. German Zoladex Trial Group. J Clin Oncol 7:1113–1119

    CAS  PubMed  Google Scholar 

  78. Kurebayashi J et al (2000) Endocrine therapies for patients with recurrent breast cancer: predictive factors for responses to first- and second-line endocrine therapies. Oncology 59(Suppl 1):31–37

    Article  CAS  PubMed  Google Scholar 

  79. Yu B et al (2010) Changes in markers of ovarian reserve and endocrine function in young women with breast cancer undergoing adjuvant chemotherapy. Cancer 116:2099–2105

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Boccardo F et al (2013) Switching to anastrozole versus continued tamoxifen treatment of early breast cancer: long term results of the Italian Tamoxifen Anastrozole trial. Eur J Cancer 49:1546–1554

    Article  CAS  PubMed  Google Scholar 

  81. Carlson RW, Hudis CA, Pritchard KI (2006) Adjuvant endocrine therapy in hormone receptor-positive postmenopausal breast cancer: evolution of NCCN, ASCO, and St Gallen recommendations. J Natl Compr Canc Netw 4:971–979

    CAS  PubMed  Google Scholar 

  82. Burstein HJ et al (2010) American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol 28:3784–3796

    Article  PubMed  Google Scholar 

  83. Harbeck N, Thomssen C, Gnant M (2013) St. Gallen 2013: brief preliminary summary of the consensus discussion. Breast Care 8:102–109

    Article  PubMed Central  PubMed  Google Scholar 

  84. Korman H, Lanni T Jr, Shah C et al (2013) Impact of a prostate multidisciplinary clinic program on patient treatment decisions and on adherence to NCCN guidelines: the William Beaumont Hospital experience. Am J Clin Oncol 36:121–125

    Article  PubMed  Google Scholar 

  85. Cardoso F, Kyriakides S, Penault-Llorca F (2013) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi7–vi23

    PubMed  Google Scholar 

  86. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  87. Kokai Y et al (1989) Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58:287–292

    Article  CAS  PubMed  Google Scholar 

  88. Wada T, Qian XL, Greene MI (1990) Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 61:1339–1347

    Article  CAS  PubMed  Google Scholar 

  89. Ullrich A et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nat Rev Mol Cell Biol 309:418–425

    CAS  Google Scholar 

  90. Coussens L et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139

    Article  CAS  PubMed  Google Scholar 

  91. Fukushige S et al (1986) Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6:955–958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Van de Vijver M et al (1988) Neu-protein overexpression in breast cancer – NEJM 319:1239–1245

    Google Scholar 

  93. Lovekin C et al (1991) c-erbB-2 oncoprotein expression in primary and advanced breast cancer. Br J Cancer 63:439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Slamon DJ et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  95. Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  96. Stal O et al (1995) c-erbB-2 expression and benefit from adjuvant chemotherapy and radiotherapy of breast cancer. Eur J Cancer 31a:2185–2190

    Article  CAS  PubMed  Google Scholar 

  97. Miles DW, Harris WH, Gillett CE, Smith P, Barnes DM (1999) Effect of c-erbB(2) and estrogen receptor status on survival of women with primary breast cancer treated with adjuvant cyclophosphamide/methotrexate/fluorouracil. Int J Cancer 84:354–359

    Article  CAS  PubMed  Google Scholar 

  98. Thor A (2001) HER2–a discussion of testing approaches in the USA. Ann Oncol 12(Suppl 1):S101–S107

    Article  PubMed  Google Scholar 

  99. Paik S et al (2002) Real-world performance of HER2 testing – national surgical adjuvant breast and bowel project experience. J Natl Cancer Inst 94:852–854

    Article  PubMed  Google Scholar 

  100. Perez EA et al (2006) HER2 testing by local, central, and reference laboratories in specimens from the north central cancer treatment group N9831 intergroup adjuvant trial. J Clin Oncol 24:3032–3038

    Article  PubMed  Google Scholar 

  101. Wolff AC et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  CAS  PubMed  Google Scholar 

  102. http://www.nccn.org/JNCCN/PDF/her22006.pdf (2006)

  103. Fendly BM et al (1990) Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 50:1550–1558

    CAS  PubMed  Google Scholar 

  104. Gajria D, Chandarlapaty S (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 11:263–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  106. Vogel C et al (2001) First-line, single-agent Herceptin(R) (trastuzumab) in metastatic breast cancer. A preliminary report. Eur J Cancer 37(Suppl 1):25–29

    Article  PubMed  Google Scholar 

  107. Lan KH, Lu CH, Yu D (2005) Mechanisms of trastuzumab resistance and their clinical implications. Ann N Y Acad Sci 1059:70–75

    Article  CAS  PubMed  Google Scholar 

  108. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857

    Article  CAS  PubMed  Google Scholar 

  109. Ritter CA et al (2004) Mechanisms of resistance development against trastuzumab (Herceptin) in an in vivo breast cancer model. Int J Clin Pharmacol Ther 42:642–643

    Article  CAS  PubMed  Google Scholar 

  110. Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68:1471–1477

    Article  CAS  PubMed  Google Scholar 

  111. Rexer BN, Arteaga CL (2012) Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog 17:1–16

    Article  PubMed Central  PubMed  Google Scholar 

  112. Scaltriti M et al (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. JNCI 99:628–638

    Google Scholar 

  113. Leyland-Jones B, Smith BR (2011) Serum HER2 testing in patients with HER2-positive breast cancer: the death knell tolls. Lancet Oncol 12:286–295

    Article  CAS  PubMed  Google Scholar 

  114. Kruger JM et al (2013) Detection of truncated HER2 forms in formalin-fixed, paraffin-embedded breast cancer tissue captures heterogeneity and is not affected by HER2-targeted therapy. Am J Pathol 183:336–343

    Article  PubMed  CAS  Google Scholar 

  115. Verma S et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  Google Scholar 

  116. Scheuer W et al (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brennan, M., Lim, B. (2015). The Actual Role of Receptors as Cancer Markers, Biochemical and Clinical Aspects: Receptors in Breast Cancer. In: Scatena, R. (eds) Advances in Cancer Biomarkers. Advances in Experimental Medicine and Biology, vol 867. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7215-0_20

Download citation

Publish with us

Policies and ethics