Skip to main content

Biomarker in Cisplatin-Based Chemotherapy for Urinary Bladder Cancer

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 867))

Abstract

The treatment of metastasized bladder cancer has been evolving during recent years. Cisplatin based chemotherapy combinations are still gold standard in the treatment of advanced and metastasized bladder cancer. But new therapies are approaching. Based to this fact biological markers will become more important for decisions in bladder cancer treatment. A systematic MEDLINE search of the key words “cisplatin”, “bladder cancer”, “DNA marker”, “protein marker”, “methylation biomarker”, “predictive marker”, “prognostic marker” has been made. This review aims to highlight the most relevant clinical and experimental studies investigating markers for metastasized transitional carcinoma of the urothelium treated by cisplatin based regimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. von der Maase H, Hansen SW, Roberts JT et al (2000) Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 18:3068–3077

    PubMed  Google Scholar 

  2. Stenzl A, Cowan NC, De Santis M et al (2011) Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 59:1009–1018

    Article  CAS  PubMed  Google Scholar 

  3. Sonpavde G, Sternberg CN (2008) Treatment of metastatic urothelial cancer: opportunities for drug discovery and development. BJU Int 102:1354–1360

    Article  CAS  PubMed  Google Scholar 

  4. Studer UE, Bacchi M, Biedermann C et al (1994) Adjuvant cisplatin chemotherapy following cystectomy for bladder cancer: results of a prospective randomized trial. J Urol 152:81–84

    CAS  PubMed  Google Scholar 

  5. Kaufman DS (2006) Challenges in the treatment of bladder cancer. Ann Oncol 17(Suppl 5):v106–v112

    Article  PubMed  Google Scholar 

  6. Tsai YS, Tzai TS, Chow NH (2007) Does HER2 immunoreactivity provide prognostic information in locally advanced urothelial carcinoma patients receiving adjuvant M-VEC chemotherapy? Urol Int 79:210–216

    Article  CAS  PubMed  Google Scholar 

  7. Hoffmann AC, Wild P, Leicht C et al (2010) MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia 12:628–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Roberts JT (2005) Chemotherapy for metastatic bladder cancer. Clin Oncol 17:514–523

    Article  CAS  Google Scholar 

  9. DeConti RC, Toftness BR, Lange RC, Creasey WA (1973) Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Res 33:1310–1315

    CAS  PubMed  Google Scholar 

  10. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    Article  CAS  PubMed  Google Scholar 

  11. Weiss C, Rodel F, Ott O et al (2007) Pretreatment proliferation and local control in bladder cancer after radiotherapy with or without concurrent chemotherapy. Strahlentherapie und Onkologie 183:552–556

    Article  PubMed  Google Scholar 

  12. Loehrer PJ Sr, Einhorn LH, Elson PJ et al (1992) A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol 10:1066–1073

    PubMed  Google Scholar 

  13. Bellmunt J, Guillem V, Paz-Ares L et al (2000) Phase I-II study of paclitaxel, cisplatin, and gemcitabine in advanced transitional-cell carcinoma of the urothelium. Spanish Oncology Genitourinary Group. J Clin Oncol 18:3247–3255

    CAS  PubMed  Google Scholar 

  14. Sternberg CN (2000) Gemcitabine in bladder cancer. Semin Oncol 27:31–39

    CAS  PubMed  Google Scholar 

  15. Herr HW (1980) Cis-diamminedichloride platinum II in the treatment of advanced bladder cancer. J Urol 123:853–855

    CAS  PubMed  Google Scholar 

  16. Soloway MS, Ikard M, Ford K (1981) Cis-diamminedichloroplatinum (II) in locally advanced and metastatic urothelial cancer. Cancer 47:476–480

    Article  CAS  PubMed  Google Scholar 

  17. de Wit R, Kruit WH, Stoter G et al (1998) Docetaxel (Taxotere): an active agent in metastatic urothelial cancer; results of a phase II study in non-chemotherapy-pretreated patients. Br J Cancer 78:1342–1345

    Article  PubMed Central  PubMed  Google Scholar 

  18. Moore MJ, Tannock IF, Ernst DS et al (1997) Gemcitabine: a promising new agent in the treatment of advanced urothelial cancer. J Clin Oncol 15:3441–3445

    CAS  PubMed  Google Scholar 

  19. Gerullis H, Ecke T, Eimer C et al (2011) Vinflunine as second-line treatment in platin-resistant metastatic urothelial carcinoma: a review. Anticancer Drugs 22:9–17

    Article  CAS  PubMed  Google Scholar 

  20. Bellmunt J, Albanell J, Paz-Ares L et al (2002) Pretreatment prognostic factors for survival in patients with advanced urothelial tumors treated in a phase I/II trial with paclitaxel, cisplatin, and gemcitabine. Cancer 95:751–757

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann J, Franzaring L, Thuroff J et al (2006) Complete long-term survival data from a trial of adjuvant chemotherapy vs control after radical cystectomy for locally advanced bladder cancer. BJU Int 97:42–47

    Article  PubMed  Google Scholar 

  22. Lehmann J, Retz M, Wiemers C et al (2005) Adjuvant cisplatin plus methotrexate versus methotrexate, vinblastine, epirubicin, and cisplatin in locally advanced bladder cancer: results of a randomized, multicenter, phase III trial (AUO-AB 05/95). J Clin Oncol 23:4963–4974

    Article  CAS  PubMed  Google Scholar 

  23. Milowsky MI, Stadler WM, Bajorin DF (2008) Integration of neoadjuvant and adjuvant chemotherapy and cystectomy in the treatment of muscle-invasive bladder cancer. BJU Int 102:1339–1344

    Article  CAS  PubMed  Google Scholar 

  24. Millikan R, Dinney C, Swanson D et al (2001) Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus adjuvant M-VAC versus cystectomy with both preoperative and postoperative M-VAC. J Clin Oncol 19:4005–4013

    CAS  PubMed  Google Scholar 

  25. Rosenberg JE, Carroll PR, Small EJ (2005) Update on chemotherapy for advanced bladder cancer. J Urol 174:14–20

    Article  CAS  PubMed  Google Scholar 

  26. Herr HW, Donat SM, Bajorin DF (2001) Post-chemotherapy surgery in patients with unresectable or regionally metastatic bladder cancer. J Urol 165:811–814

    Article  CAS  PubMed  Google Scholar 

  27. (1999) Neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: a randomised controlled trial. International collaboration of trialists. Lancet 354: 533–540

    Google Scholar 

  28. (2003) Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis. Lancet 361: 1927–1934

    Google Scholar 

  29. Grossman HB, Natale RB, Tangen CM et al (2003) Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 349:859–866

    Article  CAS  PubMed  Google Scholar 

  30. Sawhney R, Bourgeois D, Chaudhary UB (2006) Neo-adjuvant chemotherapy for muscle-invasive bladder cancer: a look ahead. Ann Oncol 17:1360–1369

    Article  CAS  PubMed  Google Scholar 

  31. Skinner DG, Daniels JR, Russell CA et al (1991) The role of adjuvant chemotherapy following cystectomy for invasive bladder cancer: a prospective comparative trial. J Urol 145:459–464, discussion 464–457

    CAS  PubMed  Google Scholar 

  32. (2005) Adjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis of individual patient data Advanced Bladder Cancer (ABC) meta-analysis collaboration. Eur Urol 48:189–199; discussion 199–201

    Google Scholar 

  33. Sylvester R, Sternberg C (2000) The role of adjuvant combination chemotherapy after cystectomy in locally advanced bladder cancer: what we do not know and why. Ann Oncol 11:851–856

    Article  CAS  PubMed  Google Scholar 

  34. Sternberg CN, Yagoda A, Scher HI et al (1985) Preliminary results of M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for transitional cell carcinoma of the urothelium. J Urol 133:403–407

    CAS  PubMed  Google Scholar 

  35. Boven E, Schipper H, Erkelens CA et al (1993) The influence of the schedule and the dose of gemcitabine on the anti-tumour efficacy in experimental human cancer. Br J Cancer 68:52–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bajorin DF, Dodd PM, Mazumdar M et al (1999) Long-term survival in metastatic transitional-cell carcinoma and prognostic factors predicting outcome of therapy. J Clin Oncol 17:3173–3181

    CAS  PubMed  Google Scholar 

  37. Niegisch G, Fimmers R, Siener R et al (2011) Prognostic factors in second-line treatment of urothelial cancers with gemcitabine and paclitaxel (German Association of Urological Oncology trial AB20/99). Eur Urol 60:1087–1096

    Article  CAS  PubMed  Google Scholar 

  38. Nawroth R, Stohr R, Hartmann A et al (2008) EMMPRIN (CD147). A new key protein during tumor progression in bladder cancer. Der Urologe Ausg A 47:1152–1156

    Article  CAS  PubMed  Google Scholar 

  39. Takata R, Katagiri T, Kanehira M et al (2005) Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Cancer Res 11:2625–2636

    Article  CAS  PubMed  Google Scholar 

  40. Rosell R, Taron M, Ariza A et al (2004) Molecular predictors of response to chemotherapy in lung cancer. Semin Oncol 31:20–27

    Article  CAS  PubMed  Google Scholar 

  41. Usanova S, Piee-Staffa A, Sied U et al (2010) Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer 9:248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Eastman A (1986) Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 25:3912–3915

    Article  CAS  PubMed  Google Scholar 

  43. Sidransky D, Frost P, Von Eschenbach A et al (1992) Clonal origin bladder cancer. N Engl J Med 326:737–740

    Article  CAS  PubMed  Google Scholar 

  44. Miyao N, Tsai YC, Lerner SP et al (1993) Role of chromosome 9 in human bladder cancer. Cancer Res 53:4066–4070

    CAS  PubMed  Google Scholar 

  45. Miura N, Takemori N, Kikugawa T et al (2012) Adseverin: a novel cisplatin-resistant marker in the human bladder cancer cell line HT1376 identified by quantitative proteomic analysis. Mol Oncol 6:311–322

    Article  CAS  PubMed  Google Scholar 

  46. Metzger R, Leichman CG, Danenberg KD et al (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316

    CAS  PubMed  Google Scholar 

  47. Bellmunt J, Paz-Ares L, Cuello M et al (2007) Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 18:522–528

    Article  CAS  PubMed  Google Scholar 

  48. Kim KH, Do IG, Kim HS et al (2010) Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin-based chemotherapy. APMIS 118:941–948

    Article  PubMed  Google Scholar 

  49. Li Q, Yu JJ, Mu C et al (2000) Association between the level of ERCC-1 expression and the repair of cisplatin-induced DNA damage in human ovarian cancer cells. Anticancer Res 20:645–652

    CAS  PubMed  Google Scholar 

  50. Simon G, Sharma A, Li X et al (2007) Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J Clin Oncol 25:2741–2746

    Article  CAS  PubMed  Google Scholar 

  51. Pastan I, Willingham MC, Gottesman M (1991) Molecular manipulations of the multidrug transporter: a new role for transgenic mice. FASEB J 5:2523–2528

    CAS  PubMed  Google Scholar 

  52. Demeule M, Brossard M, Beliveau R (1999) Cisplatin induces renal expression of P-glycoprotein and canalicular multispecific organic anion transporter. Am J Physiol 277:F832–F840

    CAS  PubMed  Google Scholar 

  53. Takara K, Tsujimoto M, Kokufu M et al (2003) Up-regulation of MDR1 function and expression by cisplatin in LLC-PK1 cells. Biol Pharm Bull 26:205–209

    Article  CAS  PubMed  Google Scholar 

  54. van den Broek GB, Wildeman M, Rasch CR et al (2009) Molecular markers predict outcome in squamous cell carcinoma of the head and neck after concomitant cisplatin-based chemoradiation. Int J Cancer (J Int du Cancer) 124:2643–2650

    Article  CAS  Google Scholar 

  55. Als AB, Dyrskjot L, von der Maase H et al (2007) Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer. Clin Cancer Res 13:4407–4414

    Article  CAS  PubMed  Google Scholar 

  56. Pollard C, Nitz M, Baras A et al (2009) Genoproteomic mining of urothelial cancer suggests {gamma}-glutamyl hydrolase and diazepam-binding inhibitor as putative urinary markers of outcome after chemotherapy. Am J Pathol 175:1824–1830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Muraoka K, Nabeshima K, Murayama T et al (1993) Enhanced expression of a tumor-cell-derived collagenase-stimulatory factor in urothelial carcinoma: its usefulness as a tumor marker for bladder cancers. Int J Cancer 55:19–26

    Article  CAS  PubMed  Google Scholar 

  58. Misra S, Ghatak S, Zoltan-Jones A, Toole BP (2003) Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem 278:25285–25288

    Article  CAS  PubMed  Google Scholar 

  59. Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9:360–372

    Article  CAS  PubMed  Google Scholar 

  60. Moussa O, Abol-Enein H, Bissada NK et al (2006) Evaluation of survivin reverse transcriptase-polymerase chain reaction for noninvasive detection of bladder cancer. J Urol 175:2312–2316

    Article  CAS  PubMed  Google Scholar 

  61. Akhtar M, Gallagher L, Rohan S (2006) Survivin: role in diagnosis, prognosis, and treatment of bladder cancer. Adv Anat Pathol 13:122–126

    Article  CAS  PubMed  Google Scholar 

  62. Tran J, Master Z, Yu JL et al (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A 99:4349–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Nakamura M, Tsuji N, Asanuma K et al (2004) Survivin as a predictor of cis-diamminedichloroplatinum sensitivity in gastric cancer patients. Cancer Sci 95:44–51

    Article  CAS  PubMed  Google Scholar 

  64. Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    CAS  PubMed  Google Scholar 

  65. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  CAS  PubMed  Google Scholar 

  66. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  67. Gazzaniga P, Gradilone A, Vercillo R et al (1996) Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. Int J Cancer 69:100–104

    Article  CAS  PubMed  Google Scholar 

  68. Thomas A, El Rouby S, Reed JC et al (1996) Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 12:1055–1062

    CAS  PubMed  Google Scholar 

  69. Wu TT, Chen JH, Lee YH, Huang JK (2000) The role of bcl-2, p53, and ki-67 index in predicting tumor recurrence for low grade superficial transitional cell bladder carcinoma. J Urol 163:758–760

    Article  CAS  PubMed  Google Scholar 

  70. Hussain SA, Ganesan R, Hiller L et al (2003) BCL2 expression predicts survival in patients receiving synchronous chemoradiotherapy in advanced transitional cell carcinoma of the bladder. Oncol Rep 10:571–576

    CAS  PubMed  Google Scholar 

  71. Cooke PW, James ND, Ganesan R et al (2000) Bcl-2 expression identifies patients with advanced bladder cancer treated by radiotherapy who benefit from neoadjuvant chemotherapy. BJU Int 85:829–835

    Article  CAS  PubMed  Google Scholar 

  72. Bush C, Price P, Norton J et al (1991) Proliferation in human bladder carcinoma measured by Ki-67 antibody labelling: its potential clinical importance. Br J Cancer 64:357–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mulder AH, Van Hootegem JC, Sylvester R et al (1992) Prognostic factors in bladder carcinoma: histologic parameters and expression of a cell cycle-related nuclear antigen (Ki-67). J Pathol 166:37–43

    Article  CAS  PubMed  Google Scholar 

  74. Matsumoto H, Wada T, Fukunaga K et al (2004) Bax to Bcl-2 ratio and Ki-67 index are useful predictors of neoadjuvant chemoradiation therapy in bladder cancer. Jpn J Clin Oncol 34:124–130

    Article  PubMed  Google Scholar 

  75. Bjorklund B (1978) Tissue polypeptide antigen (TPA): biology, biochemistry, improved assay methodology, clinical significance in cancer and other conditions, and future outlook. Antibiot Chemother 22:16–31

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt A, Bub P, Ruther U, Eisenberger F (1992) Tissue polypeptide antigen for monitoring of advanced bladder cancer after MVEC chemotherapy. Eur Urol 21(Suppl 1):10–12

    PubMed  Google Scholar 

  77. Sanchez-Carbayo M, Herrero E, Megias J et al (1999) Comparative sensitivity of urinary CYFRA 21–1, urinary bladder cancer antigen, tissue polypeptide antigen, tissue polypeptide antigen and NMP22 to detect bladder cancer. J Urol 162:1951–1956

    Article  CAS  PubMed  Google Scholar 

  78. Maulard C, Toubert ME, Chretien Y et al (1994) Serum tissue polypeptide antigen (S-TPA) in bladder cancer as a tumor marker. A prospective study. Cancer 73:394–398

    Article  CAS  PubMed  Google Scholar 

  79. Ecke TH, Lenk SV, Schlechte HH, Loening SA (2003) Tissue polypeptide antigen (TPA) in comparison with mutations of tumour suppressor gene P53 (TP53) in patients with bladder cancer. Anticancer Res 23:957–962

    CAS  PubMed  Google Scholar 

  80. van der Gaast A, Kirkels WJ, Blijenberg BG, Splinter TA (1992) Evaluation of tissue polypeptide antigen serum levels for monitoring disease activity during chemotherapy in patients with transitional carcinoma of the urinary tract. J Cancer Res Clin Oncol 118:626–628

    Article  PubMed  Google Scholar 

  81. Petrylak DP, Scher HI, Reuter V et al (1994) P-glycoprotein expression in primary and metastatic transitional cell carcinoma of the bladder. Ann Oncol/ESMO 5:835–840

    CAS  Google Scholar 

  82. Latif Z, Watters AD, Dunn I et al (2003) HER2/neu overexpression in the development of muscle-invasive transitional cell carcinoma of the bladder. Br J Cancer 89:1305–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Jimenez RE, Hussain M, Bianco FJ Jr et al (2001) Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin Cancer Res 7:2440–2447

    CAS  PubMed  Google Scholar 

  84. Kruger S, Weitsch G, Buttner H et al (2002) HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. Int J Cancer 102:514–518

    Article  CAS  PubMed  Google Scholar 

  85. Hussain MH, MacVicar GR, Petrylak DP et al (2007) Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J Clin Oncol 25:2218–2224

    Article  CAS  PubMed  Google Scholar 

  86. Chow NH, Chan SH, Tzai TS et al (2001) Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin Cancer Res 7:1957–1962

    CAS  PubMed  Google Scholar 

  87. Gandour-Edwards R, Lara PN Jr, Folkins AK et al (2002) Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 95:1009–1015

    Article  CAS  PubMed  Google Scholar 

  88. Amsellem-Ouazana D, Beuzeboc P, Peyromaure M et al (2004) Management of primary resistance to gemcitabine and cisplatin (G-C) chemotherapy in metastatic bladder cancer with HER2 over-expression. Ann Oncol/ESMO 15:538

    Article  CAS  Google Scholar 

  89. Vardouli L, Lindqvist C, Vlahou K et al (2009) Adenovirus delivery of human CD40 ligand gene confers direct therapeutic effects on carcinomas. Cancer Gene Ther 16:848–860

    Article  CAS  PubMed  Google Scholar 

  90. Ghamande S, Hylander BL, Oflazoglu E et al (2001) Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 61:7556–7562

    CAS  PubMed  Google Scholar 

  91. Nordentoft I, Dyrskjot L, Bodker JS et al (2011) Increased expression of transcription factor TFAP2alpha correlates with chemosensitivity in advanced bladder cancer. BMC Cancer 11:135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Matsui Y, Ueda S, Watanabe J et al (2007) Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species. Cancer Res 67:1212–1220

    Article  CAS  PubMed  Google Scholar 

  93. Yoshida S, Saito K, Koga F et al (2008) C-reactive protein level predicts prognosis in patients with muscle-invasive bladder cancer treated with chemoradiotherapy. BJU Int 101:978–981

    Article  PubMed  Google Scholar 

  94. Mortensen RF, Rudczynski AB (1982) Prognostic significance of serum CRP levels and lymphoid cell infiltrates in human breast cancer. Oncology 39:129–133

    Article  CAS  PubMed  Google Scholar 

  95. Nicolini A, Carpi A, Rossi G (2007) Relationship of cellular immunity, cytokines and CRP with clinical course in breast cancer patients with endocrine-dependent distant metastases treated with immunotherapy. Cancer Lett 251:330–338

    Article  CAS  PubMed  Google Scholar 

  96. Chakravarti A, Winter K, Wu CL et al (2005) Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 62:309–317

    Article  CAS  PubMed  Google Scholar 

  97. Mizutani Y, Katsuoka Y, Bonavida B (2010) Prognostic significance of second mitochondria-derived activator of caspase (Smac/DIABLO) expression in bladder cancer and target for therapy. Int J Oncol 37:503–508

    Article  CAS  PubMed  Google Scholar 

  98. Soygur T, Beduk Y, Baltaci S et al (1999) The prognostic value of peripheral blood lymphocyte subsets in patients with bladder carcinoma treated using neoadjuvant M-VEC chemotherapy. BJU Int 84:1069–1072

    Article  CAS  PubMed  Google Scholar 

  99. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  CAS  PubMed  Google Scholar 

  100. Kelley SL, Basu A, Teicher BA et al (1988) Overexpression of metallothionein confers resistance to anticancer drugs. Science 241:1813–1815

    Article  CAS  PubMed  Google Scholar 

  101. Siu LL, Banerjee D, Khurana RJ et al (1998) The prognostic role of p53, metallothionein, P-glycoprotein, and MIB-1 in muscle-invasive urothelial transitional cell carcinoma. Clin Cancer Res 4:559–565

    CAS  PubMed  Google Scholar 

  102. Mizutani Y, Yoshida O, Bonavida B (1998) Sensitization of human bladder cancer cells to Fas-mediated cytotoxicity by cis-diamminedichloroplatinum (II). J Urol 160:561–570

    Article  CAS  PubMed  Google Scholar 

  103. Zhang X, Yamashita M, Uetsuki H, Kakehi Y (2002) Short-term effects of TNP-470 in combination with cisplatin in the rat model of bladder cancer. In Vivo 16:293–297

    PubMed  Google Scholar 

  104. Shiota M, Tsunoda T, Song Y et al (2011) Enhanced S100 calcium-binding protein P expression sensitizes human bladder cancer cells to cisplatin. BJU Int 107:1148–1153

    Article  CAS  PubMed  Google Scholar 

  105. Tsai YS, Tzai TS, Chow NH et al (2003) Prognostic values of p53 and HER-2/neu coexpression in invasive bladder cancer in Taiwan. Urol Int 71:262–270

    Article  CAS  PubMed  Google Scholar 

  106. Konstantakou EG, Voutsinas GE, Karkoulis PK et al (2009) Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses. Int J Oncol 35:401–416

    CAS  PubMed  Google Scholar 

  107. Spruck CH 3rd, Rideout WM 3rd, Olumi AF et al (1993) Distinct pattern of p53 mutations in bladder cancer: relationship to tobacco usage. Cancer Res 53:1162–1166

    CAS  PubMed  Google Scholar 

  108. Qureshi KN, Griffiths TR, Robinson MC et al (2001) Combined p21WAF1/CIP1 and p53 overexpression predict improved survival in muscle-invasive bladder cancer treated by radical radiotherapy. Int J Radiat Oncol Biol Phys 51:1234–1240

    Article  CAS  PubMed  Google Scholar 

  109. Qureshi KN, Griffiths TR, Robinson MC et al (1999) TP53 accumulation predicts improved survival in patients resistant to systemic cisplatin-based chemotherapy for muscle-invasive bladder cancer. Clin Cancer Res 5:3500–3507

    CAS  PubMed  Google Scholar 

  110. Cote RJ, Esrig D, Groshen S et al (1997) p53 and treatment of bladder cancer. Nature 385:123–125

    Article  CAS  PubMed  Google Scholar 

  111. Sarkis AS, Bajorin DF, Reuter VE et al (1995) Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J Clin Oncol 13:1384–1390

    CAS  PubMed  Google Scholar 

  112. Rodel C, Grabenbauer GG, Rodel F et al (2000) Apoptosis, p53, bcl-2, and Ki-67 in invasive bladder carcinoma: possible predictors for response to radiochemotherapy and successful bladder preservation. Int J Radiat Oncol Biol Phys 46:1213–1221

    Article  CAS  PubMed  Google Scholar 

  113. Pinho MB, Costas F, Sellos J et al (2009) XAF1 mRNA expression improves progression-free and overall survival for patients with advanced bladder cancer treated with neoadjuvant chemotherapy. Urol Oncol 27:382–390

    Article  CAS  PubMed  Google Scholar 

  114. Matsumoto H, Matsuyama H, Fukunaga K et al (2004) Allelic imbalance at 1p36 may predict prognosis of chemoradiation therapy for bladder preservation in patients with invasive bladder cancer. Br J Cancer 91:1025–1031

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Patterson LH (2002) Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab Rev 34:581–592

    Article  CAS  PubMed  Google Scholar 

  116. Williams KJ, Albertella MR, Fitzpatrick B et al (2009) In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenografts. Mol Cancer Ther 8:3266–3275

    Article  CAS  PubMed  Google Scholar 

  117. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  118. Tada Y, Yokomizo A, Shiota M et al (2011) Aberrant DNA methylation of T-cell leukemia, homeobox 3 modulates cisplatin sensitivity in bladder cancer. Int J Oncol 39:727–733

    CAS  PubMed  Google Scholar 

  119. McHugh LA, Kriajevska M, Mellon JK, Griffiths TR (2007) Combined treatment of bladder cancer cell lines with lapatinib and varying chemotherapy regimens–evidence of schedule-dependent synergy. Urology 69:390–394

    Article  PubMed  Google Scholar 

  120. McHugh LA, Sayan AE, Mejlvang J et al (2009) Lapatinib, a dual inhibitor of ErbB-1/-2 receptors, enhances effects of combination chemotherapy in bladder cancer cells. Int J Oncol 34:1155–1163

    CAS  PubMed  Google Scholar 

  121. Mita AC, Takimoto CH, Mita M et al (2010) Phase 1 study of AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, in combination with chemotherapy in adults with advanced solid tumors. Clin Cancer Res 16:3044–3056

    Article  CAS  PubMed  Google Scholar 

  122. McHugh LA, Griffiths TR, Kriajevska M et al (2004) Tyrosine kinase inhibitors of the epidermal growth factor receptor as adjuncts to systemic chemotherapy for muscle-invasive bladder cancer. Urology 63:619–624

    Article  PubMed  Google Scholar 

  123. Neal DE, Sharples L, Smith K et al (1990) The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer 65:1619–1625

    Article  CAS  PubMed  Google Scholar 

  124. Wood DP Jr, Fair WR, Chaganti RS (1992) Evaluation of epidermal growth factor receptor DNA amplification and mRNA expression in bladder cancer. J Urol 147:274–277

    PubMed  Google Scholar 

  125. Lipponen P, Eskelinen M (1994) Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 69:1120–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Mellon JK, Lunec J, Wright C et al (1996) C-erbB-2 in bladder cancer: molecular biology, correlation with epidermal growth factor receptors and prognostic value. J Urol 155:321–326

    Article  CAS  PubMed  Google Scholar 

  127. Bryan RT, Hussain SA, James ND et al (2005) Molecular pathways in bladder cancer: part 1. BJU Int 95:485–490

    Article  CAS  PubMed  Google Scholar 

  128. Cheng J, Huang H, Zhang ZT et al (2002) Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 62:4157–4163

    CAS  PubMed  Google Scholar 

  129. Jarvinen TA, Liu ET (2000) Effects of HER-2/neu on chemosensitivity of tumor cells. Drug Resist Updat 3:319–324

    Article  CAS  PubMed  Google Scholar 

  130. Sandri MI, Isaacs RJ, Ongkeko WM et al (1996) p53 regulates the minimal promoter of the human topoisomerase IIalpha gene. Nucleic Acids Res 24:4464–4470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    Article  CAS  PubMed  Google Scholar 

  132. Williams SG, Buscarini M, Stein JP (2001) Molecular markers for diagnosis, staging, and prognosis of bladder cancer. Oncology 15:1461–1470, 1473–1484, 1476; discussion 1476–1484

    CAS  PubMed  Google Scholar 

  133. Kim SI, Kwon SM, Kim YS, Hong SJ (2002) Association of cyclooxygenase-2 expression with prognosis of stage T1 grade 3 bladder cancer. Urology 60:816–821

    Article  PubMed  Google Scholar 

  134. Sion-Vardy N, Vardy D, Rodeck U et al (1995) Antiproliferative effects of tyrosine kinase inhibitors (tyrphostins) on human bladder and renal carcinoma cells. J Surg Res 59:675–680

    Article  CAS  PubMed  Google Scholar 

  135. Ciardiello F, Caputo R, Bianco R et al (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7:1459–1465

    CAS  PubMed  Google Scholar 

  136. Sirotnak FM, Zakowski MF, Miller VA et al (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 6:4885–4892

    CAS  PubMed  Google Scholar 

  137. Ranson M, Hammond LA, Ferry D et al (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten H. Ecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ecke, T.H. (2015). Biomarker in Cisplatin-Based Chemotherapy for Urinary Bladder Cancer. In: Scatena, R. (eds) Advances in Cancer Biomarkers. Advances in Experimental Medicine and Biology, vol 867. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7215-0_18

Download citation

Publish with us

Policies and ethics