Skip to main content

Disturbances of the DNA Replication System

  • Chapter
  • First Online:
DNA Replication - Damage from Environmental Carcinogens

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM,volume 17))

  • 550 Accesses

Abstract

DNA damage leads to mutation, and bulky DNA damage blocks DNA replication. DNA damage also increases the misincorporation ratio by reducing the correct incorporation efficiency, by increasing the misincorporation efficiency, or by both. DNA damage can also produce frameshifts. DNA–DNA cross-linking can destroy DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Irimia A, Eoff RL, Guengerich FP, Egli M (2009) Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-Dihydro-8-oxo-2 ‘-deoxyguanosine adduct. J Biol Chem 284:22467–22480.

    Google Scholar 

  • Zang H, Irimia A, Choi JY, Angel KC, Loukachevitch LV, Egli M, Guengerich FP (2006) Efficient and high fidelity incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 281:2358–2372.

    Google Scholar 

  • Eoff RL, Irimia A, Angel KC, Egli M, Guengerich P (2007) Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 282:19831–19843.

    Google Scholar 

  • Zhao L, Pence MG, Christov PP, Wawrzak Z, Choi JY, Rizzo CJ, Egli M, Guengerich FP (2012) Basis of Miscoding of the DNA Adduct N 2,3-Ethenoguanine by Human Y-family DNA Polymerases. J Biol Chem 287:35516–35526.

    Google Scholar 

  • Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP (2009) Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4 guanine N2,N2-dimethyl substiton produces inactive and miscoding polymerase complexes. J Biol Chem 284:17687–17699.

    Google Scholar 

  • Zang H, Chowdhury G, Angel KC, Harris TM, Guengerich FP (2006) Translesion synthesis across polycyclic aromatic hydrocarbon diol epoxide adducts of deoxyadenosine by Sulfolobus solfataricus DNA polymerase Dpo4. Chem Res Toxicol 19:859–867.

    Google Scholar 

  • Vasquez-Del Carpio R, Silverstein TD, Lone S, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2011) Role of Human DNA Polymerase kappa in Extension Opposite from a cis-syn Thymine Dimer. J Mol Biol 408:252–261.

    Google Scholar 

  • Minko IG, Yamanaka K, Kozekov ID, Kozekova A, Indiani C, O’Donnell ME, Jiang Q, Goodman MF, Rizzo CJ, Lloyd RS (2008) Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family. Chem Res Toxicol 21:1983–1990.

    Google Scholar 

  • Vrtis KB, Markiewicz RP, Romano LJ, Rueda D (2013) Carcinogenic adducts induce distinct DNA polymerase binding orientations. Nucl Acids Res 41:7843–7853.

    Google Scholar 

  • Choi JY, Guengerich FP (2006) Kinetic evidence for efficient and error-prone bypass across bulky N 2-guanine DNA adducts by human DNA polymerase i. J Biol Chem 281:12315–12324.

    Google Scholar 

  • Choi JY, Angel KC, Guengerich FP (2006) Translesion synthesis across bulky N 2-alkylguanine DNA adducts by human DNA. J Biol Chem 2006:21062–21072.

    Google Scholar 

  • Choi JY, Guengerich FP (2005) Adduct size limits efficient and error-free bypass across bulky N 2-guanine DNA lesions by human DNA polymerase η. J Mol Biol 352:72–90.

    Google Scholar 

  • Choi YJ, Guengerich FP (2004) Analysis of the effect of bulk at N 2-alkylguanine DNA adducts on catalytic efficiency and fidelity of the processive DNA polymerase T7 exonuclease¯ and HIV-1 reverse transcriptase. J Biol Chem 279:19217–19229.

    Google Scholar 

  • Zhang H, Guengerich FP (2010) Effect of N-2-Guanyl Modifications on Early Steps in Catalysis of Polymerization by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239 W. J Mol Biol 395:1007–1018.

    Google Scholar 

  • Zang H, Harris TM, Guengerich FP (2005) Kinetics of nucleotide incorporation opposite polycyclic aromatic hydrocarbon - DNA adducts by processive bacteriophage T7 DNA polymerase. Chem Res Toxicol 18:389–400.

    Google Scholar 

  • Ling H, Sayer JM, Plosky BS, Yagi H, Boudsocq F, Woodgate R, Jerina DM, Yang W (2004) Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc Natl Acad Sci U S A 101:2265–2269.

    Google Scholar 

  • Kirouac KN, Basu AK, Ling H (2013) Structural Mechanism of Replication Stalling on a Bulky Amino-Polycyclic Aromatic Hydrocarbon DNA Adduct by a Y Family DNA Polymerase. J Mol Biol 425:4167–4176.

    Google Scholar 

  • Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C (2014) Variants of mouse DNA polymerase reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Proc Natl Acad Sci U S A 111:1789–1794.

    Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102.

    Google Scholar 

  • Zhang H, Beckman JW, Guengerich FP (2009) Frameshift Deletion by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239 W Is Selective for Purines and Involves Normal Conformational Change Followed by Slow Phosphodiester Bond Formation. J Biol Chem 284:35144–35153.

    Google Scholar 

  • Zang H, Goodenough AK, Choi JY, Irimia A, Loukachevitch LV, Kozekov ID, Angel KC, Rizzo CJ, Egli M, Guengerich FP (2005) DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4 - Analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N-2-ethenoguanine. J Biol Chem 280:29750–29764.

    Google Scholar 

  • Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M (1966) Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press 31:77–84.

    Google Scholar 

  • Wilson RC, Pata JD (2008) Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol Cell 29:767–779.

    Google Scholar 

  • Kunkel TA, Alexander PS (1986) The base substitution fidelity of eucaryotic DNA polymerases: mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. J Bio Chem 261:160–166.

    Google Scholar 

  • Bebenek K, Kunkel TA (1990) Frameshift errors initiated by nucleotide misincorporation. Proc Natl Acad Sci U S A 87:4946–4950.

    Google Scholar 

  • Kunkel TA, Soni A (1988) Mutagenesis by transient misalignmen. J Biol Chem 263:14784–14789.

    Google Scholar 

  • Fiala KA, Hypes CD, Suo Z (2007) Mechanism of abasic lesion bypass catalyzed by a Y-family DNA polymerase. J Biol Chem 282:8188–8198.

    Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2004) Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol Cell 13:751–762.

    Google Scholar 

  • Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwal AK (2007) Human DNA polymerase kapa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25:601–614.

    Google Scholar 

  • Brenlla A, Markiewicz RP, Rueda D, Romano LJ (2013) Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Nucleic Acids Res 42:2555–2563.

    Google Scholar 

  • Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP (2009) Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N-2-Alkylguanine Adducts. J Biol Chem 284:3563–3576.

    Google Scholar 

  • Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP (2009) Steric and Electrostatic Effects at the C2 Atom Substituent Influence Replication and Miscoding of the DNA Deamination Product Deoxyxanthosine and Analogs by DNA Polymerases. J Mol Biol 392:251–269.

    Google Scholar 

  • Eoff RL, Irimia A, Egli M, Guengerich FP (2007) Sulfolobus solfataricus DNA polymerase Dpo4 is partially inhibited by “Wobble” pairing between O 6-methylguanine and cytosine but accurate bypass is preferred. J Biol Chem 282:1456–1467.

    Google Scholar 

  • Eoff RL, Angel KC, Egli M, Guengerich FP (2007) Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O 6-benzylguanine by Sulfolobus solfataricus DNA polymerase: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. J Biol Chem 282:13573–13584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhang, H. (2015). Disturbances of the DNA Replication System. In: DNA Replication - Damage from Environmental Carcinogens. SpringerBriefs in Biochemistry and Molecular Biology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7212-9_2

Download citation

Publish with us

Policies and ethics