Skip to main content

What Can We Learn About the Neural Functions of TNAP from Studies on Other Organs and Tissues?

  • Chapter
  • First Online:
Book cover Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

To-date, the function of tissue-nonspecific alkaline phosphatase (TNAP) has largely been defined through studies in patients and mice affected by hypophosphatasia (HPP), a rare inborn-error-of-metabolism caused by mutation(s) in the TNAP gene (ALPL). The skeletal disease in HPP can be explained by alterations in the Pi/PPi ratio, with accumulation in the concentration of the mineralization inhibitor PPi as the culprit in preventing propagation of mineralization onto the collagenous extracellular matrix in bones and teeth. Accumulation of phosphorylated osteopontin increases the severity of HPP, at least in mice. Disruption in the metabolism of vitamin B6 leads to intracellular deficiency of pyridoxal, and this causes vitamin B6-responsive seizures in patients with the severe forms of the disease. Recent findings also implicate TNAP in the metabolism of ATP, in the production of adenosine and in the dephosphorylation of the bacterial toxin lipopolysaccharide , all molecules known to be involved in inflammation. The role of TNAP in establishing the ATP/adenosine ratio is important for purinergic signaling, and these mechanisms could be significant in determining axonal growth in the brain. Finally, the potential involvement of TNAP in dephosphorylating tau protein and its role in the pathogenesis of Alzheimer’s disease is intriguing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison WN, Azari F, Sorensen ES et al (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883

    Article  CAS  PubMed  Google Scholar 

  • Addison WN, Masica DL, Gray JJ et al (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705

    Article  CAS  PubMed  Google Scholar 

  • Alvaro D, Benedetti A, Marucci L et al (2000) The function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology 32:174–184

    Article  CAS  PubMed  Google Scholar 

  • Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10:822–837

    Article  CAS  PubMed  Google Scholar 

  • Anderson HC, Reynolds PR, Hsu HH et al (2002) Selective synthesis of bone morphogenetic proteins-1, -3, -4 and bone sialoprotein may be important for osteoinduction by Saos-2 cells. J Bone Miner Metab 20:73–82

    Article  CAS  PubMed  Google Scholar 

  • Anderson HC, Sipe JB, Hessle L et al (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann JM, Bisaz S, Felix R et al (1977) The role of inhibitors and other factors in the pathogenesis of recurrent calcium-containing renal stones. Clin Sci Mol Med 53:141–148

    CAS  PubMed  Google Scholar 

  • Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T > C, p. M226T; c.1112C > T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Bentala H, Verweij WR, Huizinga-Van Der Vlag A et al (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18:561–566

    Article  PubMed  Google Scholar 

  • Boskey AL, Maresca M, Ullrich W et al (1993) Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159

    Article  CAS  PubMed  Google Scholar 

  • Buchet R, Millan JL, Magne D (2013) Multisystemic functions of alkaline phosphatases. Methods Mol Biol 1053:27–51

    Article  CAS  PubMed  Google Scholar 

  • Carr G, Sayer JA, Simmons NL (2007) Expression and localisation of the pyrophosphate transporter, ANK, in murine kidney cells. Cell Physiol Biochem 20:507–516

    Article  CAS  PubMed  Google Scholar 

  • Chida K, Taguchi M (2005) Localization of alkaline phosphatase and proteins related to intercellular junctions in primary cultures of fetal rat hepatocytes. Anat Embryol (Berl) 210:75–80

    Article  CAS  Google Scholar 

  • Chida K, Taguchi M (2011) Localization of alkaline phosphatase and cathepsin D during cell restoration after colchicine treatment in primary cultures of fetal rat hepatocytes. Acta Histochem Cytochem 44:155–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciancaglini P, Yadav MC, Simão AM et al (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Díaz-Hernández M, Gómez-Ramos A, Rubio A et al (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  PubMed Central  PubMed  Google Scholar 

  • Fedde KN, Blair L, Silverstein J et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster BL, Nagatomo KJ, Nociti FH Jr et al (2012) Central role of pyrophosphate in acellular cementum formation. PLoS One 7:e38393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster BL, Nagatomo KJ, Tso HW et al (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28:271–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg RF, Austen WG Jr, Zhang X et al (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551–3556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gospe SM (2006) Pyridoxine-dependent seizures: new genetic and biochemical clues to help with diagnosis and treatment. Curr Opin Neurol 19:148–153

    Article  CAS  PubMed  Google Scholar 

  • Halling-Linder C, Narisawa S, Millán JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993

    Article  CAS  PubMed  Google Scholar 

  • Halling-Linder C, Englund UH, Narisawa S et al (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53:399–408

    Article  CAS  PubMed  Google Scholar 

  • Harmey D, Hessle L, Narisawa S et al (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmey D, Johnson KA, Zelken J et al (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2(-/-) mice. J Bone Miner Res 21:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Hatoff DE, Hardison WG (1981) Bile acids modify alkaline phosphatase induction and bile secretion pressure after bile duct obstruction in the rat. Gastroenterology 80:666–672

    CAS  PubMed  Google Scholar 

  • Hatoff DE, Hardison WG (1982) Bile acid-dependent secretion of alkaline phosphatase in rat bile. Hepatology 2:433–439

    Article  CAS  PubMed  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hori Y, Takeyama Y, Ueda T et al (1998) Impaired transport of lipopolysaccharide across the hepatocytes in rats with cerulein-induced experimental pancreatitis. Pancreas 16:148–153

    Article  CAS  PubMed  Google Scholar 

  • Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int (epub before print)

    Google Scholar 

  • Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson K, Goding J, Van Etten D et al (2003) Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Hessle L, Vaingankar S et al (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377

    CAS  PubMed  Google Scholar 

  • Kanistanon D, Powell DA, Hajjar AM et al (2012) Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses. Infect Immun 80:943–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan MM, Righetti A (1970) Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J Clin Invest 49:508–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapojos JJ, Poelstra K, Borghuis T et al (2003) Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int J Exp Pathol 84:135–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laminski NA, Meyers AM, Sonnekus MI et al (1990) Prevalence of hypocitraturia and hypopyrophosphaturia in recurrent calcium stone formers: as isolated defects or associated with other metabolic abnormalities. Nephron 56:379–386

    Article  CAS  PubMed  Google Scholar 

  • Majeska RJ, Wuthier RE (1975) Studies on matrix vesicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim Biophys Acta 391:51–60

    Article  CAS  PubMed  Google Scholar 

  • March JG, Simonet BM, Grases F (2001) Determination of pyrophosphate in renal calculi and urine by means of an enzymatic method. Clin Chim Acta 314:187–194

    Article  CAS  PubMed  Google Scholar 

  • Mckee MD, Nakano Y, Masica DL et al (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90:470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8

    Article  CAS  PubMed  Google Scholar 

  • Millan JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley VCH Verlag, Weinheim

    Book  Google Scholar 

  • Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93(4):299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millán JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787

    Article  PubMed Central  PubMed  Google Scholar 

  • Moochhala SH, Sayer JA, Carr G et al (2008) Renal calcium stones: insights from the control of bone mineralization. Exp Physiol 93:43–49

    Article  CAS  PubMed  Google Scholar 

  • Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Murshed M, Harmey D, Millán JL et al (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Yadav MC, Millán JL (2013) In vivo over-expression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598

    Google Scholar 

  • Nouwen EJ, De Broe ME (1994) Human intestinal versus tissue-nonspecific alkaline phosphatase as complementary urinary markers for the proximal tubule. Kidney Int Suppl 47:S43–S51

    CAS  PubMed  Google Scholar 

  • Ogawa H, Mink J, Hardison WG et al (1990) Alkaline phosphatase activity in hepatic tissue and serum correlates with amount and type of bile acid load. Lab Invest 62:87–95

    CAS  PubMed  Google Scholar 

  • Oldberg Å, Franzen A, Heinegård R (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettengill M, Robson S, Tresenriter M et al (2013) Soluble Ecto-5’-nucleotidase (5’-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J Biol Chem 288:27315–27326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picher M, Boucher RC (2001) Metabolism of extracellular nucleotides in human airways by a multi-enzyme system. Drug Dev Res 52:66–75

    Article  CAS  Google Scholar 

  • Picher M, Burch LH, Hirsh AJ et al (2003) Ecto 5’-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    Article  CAS  PubMed  Google Scholar 

  • Pizauro JM, Demenis MA, Ciancaglini P, Leone FA (1998) Kinetic characterization of a membrane specific ATPase from rat osseous plate and its possible significance on endochodral ossification. Biochim Biophys Acta 1368:108–114

    Article  CAS  PubMed  Google Scholar 

  • Poelstra K, Bakker WW, Klok PA et al (1997a) A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab Invest 76:319–327

    CAS  PubMed  Google Scholar 

  • Poelstra K, Bakker WW, Klok PA et al (1997b) Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 151:1163–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rietschel ET, Kirikae T, Schade FU et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    CAS  PubMed  Google Scholar 

  • Roberts S, Narisawa S, Harmey D et al (2007) Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J Bone Miner Res 22:617–627

    Article  CAS  PubMed  Google Scholar 

  • Russell RG, Bisaz S, Fleisch H (1976) The influence of orthophosphate on the renal handling of inorganic pyrophosphate in man and dog. Clin Sci Mol Med 51:435–443

    CAS  PubMed  Google Scholar 

  • Simão AM, Yadav MC, Narisawa S et al (2010) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285:7598–7609

    Article  PubMed Central  PubMed  Google Scholar 

  • Sodek J, Ganss B, Mckee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    Article  CAS  PubMed  Google Scholar 

  • Sorensen ES, Hojrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Street SE, Kramer NJ, Walsh PL et al (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33:11314–11322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson MD, Killoran A, Percy ME et al (2006) Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder? Pediatr Neurol 34:303–307

    Article  PubMed  Google Scholar 

  • Thouverey C, Bechkoff G, Pikula S et al (2009) Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthr Cartil 17:64–72

    Article  CAS  PubMed  Google Scholar 

  • Tuin A, Huizinga-Van Der Vlag A, Van Loenen-Weemaes AM et al (2006) On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol 290:G377–G385

    Article  CAS  PubMed  Google Scholar 

  • Vardy ER, Kellett KA, Cocklin SL et al (2012) Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener Dis 9:31–37

    Article  CAS  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM et al (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ et al (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Smith GP, Peters TJ (1983) Pyridoxal 5’-phosphate: a possible physiological substrate for alkaline phosphatase in human neutrophils. Histochem J 15:257–264

    Article  CAS  PubMed  Google Scholar 

  • Yadav MC, De Oliveira RC, Foster BL et al (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav MC, Simão AM, Narisawa S et al (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav MC, Huesa C, Narisawa S et al (2014) Ablation of osteopontin improves the skeletal phenotype of Phospho1 -/- mice. J Bone Miner Res 29(11):2369–2381

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Millán, J.L. (2015). What Can We Learn About the Neural Functions of TNAP from Studies on Other Organs and Tissues?. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_8

Download citation

Publish with us

Policies and ethics