Skip to main content

Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro . We used tetramisole , a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949 . The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels . Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that GAD is one among multiple PLP-dependent enzymes. Approximately 60 genes encoding for enzymes using PLP as cofactor have been identified in mammals (Percudani and Peracchi 2009). In addition to GAD, some of these enzymes are directly involved in the synthesis of other neurotransmitters such as dopamine and serotonin (Ermonval et al. 2009).

  2. 2.

    Orthodromic responses could not be tested with 2 mM tetramisole: among the 4 experiments in which we used this concentration, 2 showed no measurable orthodromic response in the control condition, while in the other 2 experiments the orthodromic response obtained in the control condition failed to recover.

  3. 3.

    Adverse reactions after single levamisole or tetramisole doses have been consistently reported in veterinary medicine, and were usually attributed to their actions on ganglionic ACh receptors (reviewed in Hsu 1980).

  4. 4.

    In the context of cancer therapy, levamisole has also been reported to possess antiproliferative action in vitro (Kovach et al. 1992; Artwohl et al. 2000). However, the levamisole concentrations required to achieve significant effects in vitro appear to be much higher than the plasmatic concentration of levamisole in clinical therapy. Levamisole concentration in a range similar to the plasmatic concentration measured in patients fails to prevent the proliferation of cancer cell lines in vitro (Grem and Allegra 1989; Wiebke et al. 2003).

  5. 5.

    The epileptic seizures that have been observed in the course of chronic levamisole treatments have all been reported in children but not in adults. This offers another interesting parallel with vitamin B6 metabolism alteration: experimental studies showed that vitamin B6 deficiency results in epileptic crisis in young animals but not in the adults (Daniel et al. 1942; Guilarte 1989).

  6. 6.

    In addition to its involvement as an ectonucleotidase, TNAP could also intervene in myelination through vitamin B6 metabolism. In support for a role of PLP in myelination, it has been reported that vitamin B6 deficiency during development results in altered myelination (Lott et al. 1978; Kirksey et al. 1990). Indeed, PLP is a cofactor for two enzymes (serine palmitoyltransferase and sphingosine-1-phosphatelyase) involved in sphingolipid synthesis (Bourquin et al. 2011). Among sphingolipids, sphingomyelin, as expected from its name, happens to be particularly abundant in myelin. On the other hand, if myelination impairments observed in levamisole-induced multifocal leukoencephalopathy were consecutive to altered vitamin B6 metabolism, another PLP-dependent process, GABA synthesis, should also be impaired. This should result in occurrences of epileptic seizures in patients with levamisole-induced leukoencephalopathy, which, to our knowledge, have not been reported in case studies.

  7. 7.

    In France for example, levamisole can still be used for the treatment of pediatric nephrotic syndrome, but under very restrictive conditions.

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    CAS  PubMed  Google Scholar 

  • Aceves J, Erlij D, Martínez-Marañón R (1970) The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. Br J Pharmacol 38:602–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed FY, Leonard GA, A’Hern R, Taylor AE, Lorentzos A, Atkinson H, Moore J, Nicolson MC, Riches PG, Gore ME (1996) A randomised dose escalation study of subcutaneous interleukin 2 with and without levamisole in patients with metastatic renal cell carcinoma or malignant melanoma. Br J Cancer 74:1109–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anagnostou F, Plas C, Forest N (1996) Ecto-alkaline phosphatase considered as levamisole-sensitive phosphohydrolase at physiological pH range during mineralization in cultured fetal calvaria cells. J Cell Biochem 60:484–494

    CAS  PubMed  Google Scholar 

  • Arnaud JP, Buyse M, Nordlinger B, Martin F, Pector JC, Zeitoun P, Adloff A, Duez N (1989) Adjuvant therapy of poor prognosis colon cancer with levamisole: results of an EORTC double-blind randomized clinical trial. Br J Surg 76:284–289

    CAS  PubMed  Google Scholar 

  • Artwohl M, Hölzenbein T, Wagner L, Freudenthaler A, Waldhäusl W, Baumgartner-Parzer SM (2000) Levamisole induced apoptosis in cultured vascular endothelial cells. Br J Pharmacol 131:1577–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atchison WD, Geary TG, Manning B, VandeWaa EA, Thompson DP (1992) Comparative neuromuscular blocking actions of levamisole and pyrantel-type anthelmintics on rat and gastrointestinal nematode somatic muscle. Toxicol Appl Pharmacol 112:133–143

    CAS  PubMed  Google Scholar 

  • Aymard JP, Janot C, Thibaut G, Bertrand F, Legras B, Lederlin P, Streiff F (1984) Levamisole in chronic lymphocytic leukaemia: a prospective study of 15 patients. Acta Haematol 71:316–321

    CAS  PubMed  Google Scholar 

  • Balasubramaniam S, Bowling F, Carpenter K, Earl J, Chaitow J, Pitt J, Mornet E, Sillence D, Ellaway C (2010) Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5′-phosphate availability. J Inherit Metab Dis Suppl 3:S25–S33

    Google Scholar 

  • Barth A, Morton DL (1995) The role of adjuvant therapy in melanoma management. Cancer 75(S2):726–734

    CAS  PubMed  Google Scholar 

  • Bartos M, Rayes D, Bouzat C (2006) Molecular determinants of pyrantel selectivity in nicotinic receptors. Mol Pharmacol 70:1307–1318

    CAS  PubMed  Google Scholar 

  • Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Bürgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Högler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T > C, p. M226T; c.1112C > T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661

    CAS  PubMed  Google Scholar 

  • Béthenod M, Cotte MF, Collombel C, Fréderich A, Cotte J (1967) Hypophosphatasie à révélation néo-natale. Amélioration osseuse. Encéphalopathie convulsivante fatale. Ann Pediatr (Paris) 14:835–841

    Google Scholar 

  • Blanc PD, Chin C, Lynch KL (2012) Multifocal inflammatory leukoencephalopathy associated with cocaine abuse: is levamisole responsible? Clin Toxicol 50:534–535

    CAS  Google Scholar 

  • Boison D (2012) Adenosine dysfunction in epilepsy. Glia 60:1234–1243

    PubMed Central  PubMed  Google Scholar 

  • Borgers M (1973) The cytochemical application of new potent inhibitors of alkaline phosphatases. J Histochem Cytochem 21:812–824

    CAS  PubMed  Google Scholar 

  • Bostock H, Sears TA, Sherratt RM (1981) The effects of 4-aminopyryridine and tetraethylamonium ions on normal and demyelinated mammalian nerve fibres. J Physiol 313:301–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne G (1943) The distribution of alkaline phosphatase in various tissues. Quart J exp physiol 32:1–20

    CAS  Google Scholar 

  • Bourquin F, Capitani G, Grütter MG (2011) PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 20:1492–1508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bozik ME, Gilbert MR (1994) The role of levamisole in 5-fluorouracil-levamisole-associated multifocal leukoencephalopathy. Ann Neurol 36:295

    Google Scholar 

  • British Association for Paediatric Nephrology (1991) Levamisole for corticosteroid-dependent nephrotic syndrome in childhood. Lancet 337: 1555–1557

    Google Scholar 

  • Brugmans J, Schuermans V, De Cock W, Thienpont D, Janssen P, Verhaegen H, Van Nimmen L, Louwagie AC, Stevens E (1973) Restoration of host defense mechanisms in man by levamisole. Life Sci 13:1499–1504

    CAS  PubMed  Google Scholar 

  • Brumberg JC, Nowak LG, McCormick DA (2000) Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci 20:4829–4843

    CAS  PubMed  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536

    CAS  PubMed  Google Scholar 

  • Buchanan JA, Lavonas EJ (2012) Agranulocytosis and other consequences due to use of illicit cocaine contaminated with levamisole. Curr Opin Hematol 19:27–31

    CAS  PubMed  Google Scholar 

  • Bullock MW, Hand JJ, Waletzky E (1968) Resolution and racemization of dl-tetramisole, dl-6-phenyl-2,3,5,6-tetrahydroimidazo-[2,1-b]thiazole. J Med Chem 11:169–171

    CAS  PubMed  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    CAS  PubMed  Google Scholar 

  • Calhau C, Martel F, Hipólito-Reis C, Azevedo I (2000) Differences between duodenal and jejunal rat alkaline phosphatase. Clin Biochem 33:571–577

    CAS  PubMed  Google Scholar 

  • Carter BC, Bean BP (2009) Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64:898–909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casale JF, Colley VL, Legatt DF (2012) Determination of phenyltetrahydroimidazothiazole enantiomers (Levamisole/Dexamisole) in illicit cocaine seizures and in the urine of cocaine abusers via chiral capillary gas chromatography-flame-ionization detection: clinical and forensic perspectives. J Anal Toxicol 36:130–135

    CAS  PubMed  Google Scholar 

  • Chang TW, Fiumara N (1978) Treatment with levamisole of recurrent herpes genitalis. Antimicrob Agents Chemother 13:809–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen TC, Hinton DR, Leichman L, Atkinson RD, Apuzzo ML, Couldwell WT (1994) Multifocal inflammatory leukoencephalopathy associated with levamisole and 5-fluorouracil: case report. Neurosurgery 35:1138–1142

    CAS  PubMed  Google Scholar 

  • Chlebowski RTL, Lillington L, Nystrom JS, Sayre J (1994) Late mortality and levamisole adjuvant therapy in colorectal cancer. Br J Cancer 69:1094–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciancaglini P, Yadav MC, Simão AM, Narisawa S, Pizauro JM, Farquharson C, Hoylaerts MF, Millán JL (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cieślak M, Kukulski F, Komoszyński M (2011) Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal 7:393–402

    PubMed Central  PubMed  Google Scholar 

  • Cohen IS, Strichartz GR (1977) On the voltage-dependent action of tetrodotoxin. Biophys J 17:275–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins GG, Anson J (1985) Adenosine A1 receptors mediate the inhibitory effects of exogenous adenosine in the rat olfactory cortex slice. Neuropharmacology 24:1077–1084

    CAS  PubMed  Google Scholar 

  • Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406:443–468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cossart R, Bernard C, Ben-Ari Y (2005) Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci 28:108–115

    CAS  PubMed  Google Scholar 

  • Critchley P, Abbott R, Madden FJ (1994) Multifocal inflammatory leukoencephalopathy developing in a patient receiving 5-fluorouracil and levamisole. Clin Oncol (R Coll Radiol) 6:406

    CAS  Google Scholar 

  • Dahl R, Sergienko EA, Su Y, Mostofi YS, Yang L, Simao AM, Narisawa S, Brown B, Mangravita-Novo A, Vicchiarelli M, Smith LH, O’Neill WC, Millán JL, Cosford ND (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem 52:6919–6925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniel EP, Kline OD, Tolle CD (1942) A convulsive syndrome in young rats associated with pyridoxine deficiency. J Nutr 23:205–216

    CAS  Google Scholar 

  • Dau PC, Johnson KP, Spitler LE (1976) The effect of levamisole on cellular immunity in multiple sclerosis. Clin Exp Immunol 26:302–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky C, Moro L, Panfili E, Pollesello P, Stagni N, Vittur F (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623

    PubMed  Google Scholar 

  • De Col R, Messlinger K, Carr RW (2008) Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 586:1089–1103

    PubMed Central  PubMed  Google Scholar 

  • Debray J, Chang L, Marquès S, Pellet-Rostaing S, Le Duy D, Mebarek S, Buchet R, Magne D, Popowycz F, Lemaire M (2013) Inhibitors of tissue-nonspecific alkaline phosphatase: design, synthesis, kinetics, biomineralization and cellular tests. Bioorg Med Chem 21:7981–7987

    CAS  PubMed  Google Scholar 

  • Deisz RA, Prince DA (1989) Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol 412:513–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93:9887–9892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32:79–87

    PubMed  Google Scholar 

  • Dinai Y, Pras M (1975) Levamisole in rheumatoid arthritis. Lancet 2(7934):556

    CAS  PubMed  Google Scholar 

  • Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS ONE 4:e6497

    PubMed Central  PubMed  Google Scholar 

  • Eyre P (1970) Some pharmacodynamic effects of the nematocides: methyridine, tetramisole and pyrantel. J Pharm Pharmacol 22:26–36

    CAS  PubMed  Google Scholar 

  • Fassas AB, Gattani AM, Morgello S (1994) Cerebral demyelination with 5-fluorouracil and levamisole. Cancer Invest 12:379–383

    CAS  PubMed  Google Scholar 

  • Ferroir JP, Fenelon G, Beaugerie L, Avenin Recoing D (1994) Leucoencéphalopathie multifocale inflammatoire, complication de la chimiothérapie par 5 fluorouracil et levamisole. Rev Neurol (Paris) 150:471–474

    CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22:214–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J, Fire A, Sulston JE, Barnard EA, Sattelle DB, Lewis JA (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17:5843–5857

    CAS  PubMed  Google Scholar 

  • Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during development. Cereb Cortex 12:199–211

    PubMed  Google Scholar 

  • Fonta C, Négyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196

    PubMed  Google Scholar 

  • Fonta C, Négyessy L, Brun-Heath I, Ermonval M, Czege D, Nowak LG, Frances B, Xiao JS, Mornet E, Millán JL (2012) Bone TNAP in the brain: functions in neurotransmission. Bull Group Int Rech Sci Stomatol Odontol 51:27

    Google Scholar 

  • Fonta C, Cruz T, Rosay B, Millán JL, Balayssac S, Gilard V, Malet-Martino M, Nowak LG (2014) A dual approach to explore the functions of the tissue nonspecific alkaline phosphatase (TNAP) in the brain. Ninth FENS Forum of Neuroscience, Milan, Italy. Abstract Number: FENS-1232

    Google Scholar 

  • Fontanez DE, Porter JT (2006) Adenosine A1 receptors decrease thalamic excitation of inhibitory and excitatory neurons in the barrel cortex. Neuroscience 137:1177–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox DA, Ruan DY (1989) Time- and frequency-dependent effects of potassium channel blockers on large and medium diameter optic tract axons. Brain Res 498:229–242

    CAS  PubMed  Google Scholar 

  • Franz DN, Perry RS (1974) Mechanisms for differential block among single myelinated and non-myelinated axons by procaine. J Physiol 236:193–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser D (1957) Hypophosphatasia. Am J Med 22:730–746

    CAS  PubMed  Google Scholar 

  • Friede RL (1966) A quantitative mapping of alkaline phosphatase in the brain of the rhesus monkey. J Neurochem 13:197–203

    CAS  PubMed  Google Scholar 

  • Fucci N (2007) Unusual adulterants in cocaine seized on Italian clandestine market. Forensic Sci Int 172:e1

    PubMed  Google Scholar 

  • Gilbert JW (2011) J Neuroimaging 21:e188

    PubMed  Google Scholar 

  • Goldstein DJ, Rogers CE, Harris H (1980) Expression of alkaline phosphatase loci in mammalian tissues. Proc Natl Acad Sci USA 77:2857–2860

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Duarte A, Williams R (2013) Cocaine-induced recurrent leukoencephalopathy. Neuroradiol J 26:511–513

    PubMed  Google Scholar 

  • Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grem JL, Allegra CJ (1989) Toxicity of levamisole and 5-fluorouracil in human colon carcinoma cells. J Natl Cancer Inst 81:1413–1417

    CAS  PubMed  Google Scholar 

  • Guilarte TR (1989) Regional changes in the concentrations of glutamate, glycine, taurine, and GABA in the vitamin B-6 deficient developing rat brain: association with neonatal seizures. Neurochem Res 14:889–897

    CAS  PubMed  Google Scholar 

  • Gulati OD, Hemavathi KG, Joshi DP (1985) Interactions of levamisole with some autonomic drugs on guinea-pig vas deferens. J Auton Pharmacol 5:19–23

    CAS  PubMed  Google Scholar 

  • Gwilt P, Tempero M, Kremer A, Connolly M, Ding C (2000) Pharmacokinetics of levamisole in cancer patients treated with 5-fluorouracil. Cancer Chemother Pharmacol 45:247–251

    CAS  PubMed  Google Scholar 

  • Hadden JW, Lopez C, O’Reilly RJ, Hadden EM (1977) Levamisole and inosiplex: antiviral agents with immunopotentiating action. Ann NY Acad Sci 284:139–152

    CAS  PubMed  Google Scholar 

  • Hanics J, Barna J, Xiao J, Millán JL, Fonta C, Négyessy L (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349:459–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrow ID, Gration KAF (1985) Mode of action of the anthelmintics morantel, pyrantel and levamisole on muscle cell membrane of the nematode Ascaris suum. Pestic Sci 16:662–672

    CAS  Google Scholar 

  • Hershkowitz N, Ayala GF (1981) Effects of phenytoin on pyramidal neurons of the rat hippocampus. Brain Res 208:487–492

    CAS  PubMed  Google Scholar 

  • Hertz F, Deghenghi R (1985) Effect of rat and beta-human interferons on hyperacute experimental allergic encephalomyelitis in rats. Agents Actions 16:397–403

    CAS  PubMed  Google Scholar 

  • Hess C, Ritke N, Sydow K, Mehling LM, Ruehs H, Madea B, Musshoff F (2014) Determination of levamisole, aminorex, and pemoline in plasma by means of liquid chromatography-mass spectrometry and application to a pharmacokinetic study of levamisole. Drug Test Anal 6:1049–1054

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108:37–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hondeghem LM (1978) Validity of Vmax as a measure of the sodium current in cardiac and nervous tissues. Biophys J 23:147–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hook CC, Kimmel DW, Kvols LK, Scheithauer BW, Forsyth PA, Rubin J, Moertel CG, Rodriguez M (1992) Multifocal inflammatory leukoencephalopathy with 5-fluorouracil and levamisole. Ann Neurol 3:262–267

    Google Scholar 

  • Hoshi K, Amizuka N, Oda K, Ikehara Y, Ozawa H (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107:183–191

    CAS  PubMed  Google Scholar 

  • Howe JR, Sutor B, Zieglgänsberger W (1987a) Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro. Cell Mol Neurobiol 7:1–18

    Google Scholar 

  • Howe JR, Sutor B, Zieglgänsberger W (1987b) Baclofen reduces postsynaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol 384:539–569

    Google Scholar 

  • Hsu WH (1980) Toxicity and drug interactions of levamisole. J Am Vet Med Assoc 176:1166–1169

    CAS  PubMed  Google Scholar 

  • Ibusuki S, Katsuki H, Takasaki M (1998) The effects of extracellular pH with and without bicarbonate on intracellular procaine concentrations and anesthetic effects in crayfish giant axons. Anesthesiology 88:1549–1557

    CAS  PubMed  Google Scholar 

  • Irnich D, Tracey DJ, Polten J, Burgstahler R, Grafe P (2002) ATP stimulates peripheral axons in human, rat and mouse—differential involvement of A(2B) adenosine and P2X purinergic receptors. Neuroscience 110:123–129

    CAS  PubMed  Google Scholar 

  • Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Israel ZH, Lossos A, Barak V, Soffer D, Siegal T (2000) Multifocal demyelinative leukoencephalopathy associated with 5-fluorouracil and levamisole. Acta Oncol 39:117–120

    CAS  PubMed  Google Scholar 

  • Joly C, Palisse M, Ribbe D, De Calmes O, Genevey P (1998) Intoxication aiguë au levamisole “à dose de cheval”. La revue des SAMU 1998:237–240

    Google Scholar 

  • Kao CY, Walker SE (1982) Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon. J Physiol 323:619–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    CAS  PubMed  Google Scholar 

  • Kimmel DW, Schutt AJ (1993) Multifocal leukoencephalopathy: occurrence during 5-fluorouracil and levamisole therapy and resolution after discontinuation of chemotherapy. Mayo Clin Proc 68:363–365

    CAS  PubMed  Google Scholar 

  • Kimmel DW, Wijdicks EF, Rodriguez M (1995) Multifocal inflammatory leukoencephalopathy associated with levamisole therapy. Neurology 45:374–376

    CAS  PubMed  Google Scholar 

  • Kirksey A, Morré DM, Wasynczuk AZ (1990) Neuronal development in vitamin B6 deficiency. Ann NY Acad Sci 585:202–218

    CAS  PubMed  Google Scholar 

  • Kouassi E, Caillé G, Léry L, Larivière L, Vézina M (1986) Novel assay and pharmacokinetics of levamisole and p-hydroxylevamisole in human plasma and urine. Biopharm Drug Dispos 7:71–89

    CAS  PubMed  Google Scholar 

  • Kovach JS, Svingen PA, Schaid DJ (1992) Levamisole potentiation of fluorouracil antiproliferative activity mimicked by orthovanadate, an inhibitor of tyrosine phosphatase. J Natl Cancer Inst 84:515–519

    CAS  PubMed  Google Scholar 

  • Lahaie E (2012) Quel est le produit qui circule? In: Pousset M (ed) Observatoire Français des Drogues et des Toxicomanes; cocaïne, données essentielles, pp 35–41

    Google Scholar 

  • Landow H, Kabat EA, Newman W (1942) Distribution of alkaline phosphatase in normal and in neoplastic tissues of the nervous system. A histochemical study. Arch Neurol Psychiatry 48:518–530

    CAS  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    CAS  PubMed  Google Scholar 

  • Larocque A, Hoffman RS (2012) Levamisole in cocaine: unexpected news from an old acquaintance. Clin Toxicol 50:231–241

    CAS  Google Scholar 

  • Le Quesne PM, Goldberg V, Vajda F (1976) Acute conduction velocity changes in guinea-pigs after administration of diphenylhydantoin. J Neurol Neurosurg Psychiatry 39:995–1000

    PubMed Central  PubMed  Google Scholar 

  • Lee KC, Ladizinski B, Federman DG (2012) Complications associated with use of levamisole-contaminated cocaine: an emerging public health challenge. Mayo Clin Proc 87:581–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeGatt DF (2009) New cocaine cutting agent poses greater risk to users. Clinical & Forensic Toxicology News, Sep 2009

    Google Scholar 

  • Leichman L, Brown T, Poplin B (1993) Symptomatic, radiologic and pathologic changes in the central nervous system (CNS) associated with 5-fluorouracil (5-FU) and levamisole (LEV) therapy. Proc Am Soc Clin Oncol 12:198

    Google Scholar 

  • Levandoski MM, Piket B, Chang J (2003) The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 471:9–20

    CAS  PubMed  Google Scholar 

  • Lewis JA, Wu CH, Levine JH, Berg H (1980) Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5:967–989

    CAS  PubMed  Google Scholar 

  • Liu HM, Hsieh WJ, Yang CC, Wu VC, Wu KD (2006) Leukoencephalopathy induced by levamisole alone for the treatment of recurrent aphthous ulcers. Neurology 67:1065–1067

    CAS  PubMed  Google Scholar 

  • Lott IT, Coulombe T, Di Paolo RV, Richardson EP Jr, Levy HL (1978) Vitamin B6-dependent seizures: pathology and chemical findings in brain. Neurology 28:47–54

    CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Kimmel DW, Pavelko K, Rodriguez M (1997) 5-Fluorouracil and levamisole exacerbate demyelination in susceptible mice infected with Theiler’s virus. Exp Neurol 147:123–129

    CAS  PubMed  Google Scholar 

  • Lucia P, Pocek M, Passacantando A, Sebastiani ML, De Martinis C (1996) Multifocal leucoencephalopathy induced by levamisole. Lancet 348:1450

    CAS  PubMed  Google Scholar 

  • Luyckx M, Cazin M, Brunet C, Cazin JC, Devulder B, Gosselin P, Adenis L, Cappelaere P, Granier AM, Demaille A (1983) Lymphocytes T and pharmacokinetics after a single oral dose of levamisole in healthy and cancer subjects. Methods Find Exp Clin Pharmacol 5:467–469

    CAS  PubMed  Google Scholar 

  • Macdonald RL, Kang JQ, Gallagher MJ (2010) Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 588:1861–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macfarlane DG, Bacon PA (1978) Levamisole-induced vasculitis due to circulating immune complexes. Br Med J 1(6110):407–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcus DJ, Swift TR, McDonald TF (1981) Acute effects of phenytoin on peripheral nerve function in the rat. Muscle Nerve 4:48–50

    CAS  PubMed  Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    CAS  PubMed  Google Scholar 

  • Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M, Domercq M (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    CAS  PubMed  Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    CAS  PubMed  Google Scholar 

  • Mehansho H, Henderson LM (1980) Transport and accumulation of pyridoxine and pyridoxal by erythrocytes. J Biol Chem 255:11901–11907

    CAS  PubMed  Google Scholar 

  • Millán JL (2006). Mammalian alkaline phosphatases. From biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH & Co, Weinheim, Germany

    Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, Ungerleider JS, Emerson WA, Tormey DC, Glick JH, Veerder MH, Mailliard JA (1990) Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322:352–358

    CAS  PubMed  Google Scholar 

  • Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen CM, Ungerleider JS, Emerson WA, Tormey DC, Glick JH, Veeder MH, Mailliard JA (1995) Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report. Ann Int Med 122:321–326

    CAS  PubMed  Google Scholar 

  • Mohammad FK, Faris GA, Rhayma MS, Ahmed K (2006) Neurobehavioral effects of tetramisole in mice. Neurotoxicology 27:153–157

    CAS  PubMed  Google Scholar 

  • Mongeau JG, Robitaille PO, Roy F (1988) Clinical efficacy of levamisole in the treatment of primary nephrosis in children. Pediatr Nephrol 2:398–401

    CAS  PubMed  Google Scholar 

  • Mori S, Nagano M (1985) Electron microscopic cytochemistry of alkaline phosphatase in neurons of rats. Arch Histol Jpn 48:389–397

    CAS  PubMed  Google Scholar 

  • Morley SR, Forrest ARW, Galloway JH (2006) Levamisole as a contaminant of illicit Cocaine. Int Assoc Forensic Toxicologists 44:6

    Google Scholar 

  • Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2:40

    PubMed Central  PubMed  Google Scholar 

  • Morris DC, Masuhara K, Takaoka K, Ono K, Anderson HC (1992) Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner 19:287–298

    CAS  PubMed  Google Scholar 

  • Murray CL, Ford WJ, Swenson KK, Heros D, Sperduto PW (1997) Multifocal inflammatory leukoencephalopathy after fluorouracil and levamisole therapy for colon cancer. AJNR Am J Neuroradiol 18:1591–1592

    CAS  PubMed  Google Scholar 

  • Nandy K, Bourne GH (1963) Alkaline phosphatases in brain and spinal cord. Nature 200:1216–1217

    CAS  PubMed  Google Scholar 

  • Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    CAS  PubMed  Google Scholar 

  • Négyessy L, Xiao J, Kántor O, Kovács GG, Palkovits M, Dóczi TP, Renaud L, Baksa G, Glasz T, Ashaber M, Barone P, Fonta C (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418

    PubMed  Google Scholar 

  • Neu IS (1993) Multifocal inflammatory leukencephalopathy caused by adjuvant therapy with 5-fluorouracil and levamisole after resection for an adenocarcinoma of the colon. Acta Neurol Scand 87:70

    CAS  PubMed  Google Scholar 

  • Niaudet P, Drachman R, Gagnadoux MF, Broyer M (1984) Treatment of idiopathic nephrotic syndrome with levamisole. Acta Paediatr Scand 73:637–641

    CAS  PubMed  Google Scholar 

  • Nowak LG, Bullier J (1996) Spread of stimulating current in the cortical grey matter of rat visual cortex studied on a new in vitro slice preparation. J Neurosci Methods 67:237–248

    CAS  PubMed  Google Scholar 

  • Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108-15 cells : a key enzyme mediating P1 antagonist-sensitive ATP response. Br J Pharmacol 131:1667–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onuaguluchi G, Igbo IN (1987) Comparative local anaesthetic and antiarrhythmic actions of levamisole hydrochloride and lignocaine hydrochloride. Arch Int Pharmacodyn Ther 289:278–289

    CAS  PubMed  Google Scholar 

  • Pabst HF, Crawford J (1975) L-tetramisole. Enhancement of human lymphocyte response to antigen. Clin Exp Immunol 21:468–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pagonopoulou O, Efthimiadou A, Asimakopoulos B, Nikolettos NK (2006) Modulatory role of adenosine and its receptors in epilepsy: possible therapeutic approaches. Neurosci Res 56:14–20

    CAS  PubMed  Google Scholar 

  • Palcoux JB, Niaudet P, Goumy P (1994) Side effects of levamisole in children with nephrosis. Pediatr Nephrol 8:263–264

    CAS  PubMed  Google Scholar 

  • Parkinson DR, Cano PO, Jerry LM, Capek A, Shibata HR, Mansell PW, Lewis MG, Marquis G (1977) Complications of cancer immunotherapy with levamisole. Lancet 1(8022):1129–1132

    CAS  PubMed  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    CAS  PubMed  Google Scholar 

  • Percudani R, Peracchi A (2009) The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10:273

    PubMed Central  PubMed  Google Scholar 

  • Perry DC, Xiao Y, Nguyen HN, Musachio JL, Dávila-García MI, Kellar KJ (2002) Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481

    CAS  PubMed  Google Scholar 

  • Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5’-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    CAS  PubMed  Google Scholar 

  • Pinner B, Davison JF, Campbell JB (1964) Alkaline Phosphatase in Peripheral Nerves. Science 145:936–938

    CAS  PubMed  Google Scholar 

  • Pinto V, Derkach VA, Safronov BV (2008) Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission. J Neurophysiol 99:617–628

    CAS  PubMed  Google Scholar 

  • Pires JG, Futuro-Neto HA, Oliveira AM, Cabral AM (1979) The effect of levamisole on the cardiac responses to sympathomimetics and on the amine uptake process. J Pharm Pharmacol 31:257–258

    CAS  PubMed  Google Scholar 

  • Prieur AM, Buriot D, Lefur JM, Griscelli C (1978) Possible toxicity of levamisole in children with rheumatoid arthritis. J Pediatr 93:304–305

    CAS  PubMed  Google Scholar 

  • Raeymaekers AH, Allewijn FT, Vandenberk J, Demoen PJ, Van Offenwert TT, Janssen PA (1966) Novel broad-spectrum anthelmintics. Tetramisole and related derivatives of 6-arylimidazo[2,1-b]thiazole. J Med Chem 9:545–551

    CAS  PubMed  Google Scholar 

  • Rathbun JC (1948) Hypophosphatasia; a new developmental anomaly. Am J Dis Child 75:822–831

    CAS  PubMed  Google Scholar 

  • Rayes D, De Rosa MJ, Bartos M, Bouzat C (2004) Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole. J Biol Chem 279:36372–36381

    CAS  PubMed  Google Scholar 

  • Raymond SA (1992) Subblocking concentrations of local anesthetics: effects on impulse generation and conduction in single myelinated sciatic nerve axons in frog. Anesth Analg 75:906–921

    CAS  PubMed  Google Scholar 

  • Rehni AK, Singh TG (2010) Levamisole-induced reduction in seizure threshold: a possible role of nicotinic acetylcholine receptor-mediated pathway. Naunyn Schmiedebergs Arch Pharmacol 382:279–285

    CAS  PubMed  Google Scholar 

  • Reid JM, Kovach JS, O’Connell MJ, Bagniewski PG, Moertel CG (1998) Clinical and pharmacokinetic studies of high-dose levamisole in combination with 5-fluorouracil in patients with advanced cancer. Cancer Chemother Pharmacol 41:477–484

    CAS  PubMed  Google Scholar 

  • Renoux G, Renoux M (1972) Antigenic competition and nonspecific immunity after a rickettsial infection in mice: restoration of antibacterial immunity by phenyl-imidothiazole treatment. J Immunol 109:761–765

    CAS  PubMed  Google Scholar 

  • Renoux G, Renoux M, Teller MN, McMahon S, Guillaumin JM (1976) Potentiation of T-cell mediated immunity by levamisole. Clin Exp Immunol 25:288–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rifkin DB, Compans RW, Reich E (1972) A specific labeling procedure for proteins on the outer surface of membranes. J Biol Chem 247:6432–64327

    CAS  PubMed  Google Scholar 

  • Robertson SJ, Martin RJ (1993) Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. Br J Pharmacol 108:170–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruuskanen O, Remes M, Mäkela AL, Isomäki H, Toivanen A (1976) Levamisole and agranulocytosis. Lancet 308:958–959

    Google Scholar 

  • Sanchez MR (2000) Miscellaneous treatments: thalidomide, potassium iodide, levamisole, clofazimine, colchicine, and D-penicillamine. Clin Dermatol 18:131–145

    CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    CAS  PubMed  Google Scholar 

  • Savarese DM, Gordon J, Smith TW, Litofsky NS, Licho R, Ragland R, Recht L (1996) Cerebral demyelination syndrome in a patient treated with 5-fluorouracil and levamisole. The use of thallium SPECT imaging to assist in noninvasive diagnosis—a case report. Cancer 77:387–394

    CAS  PubMed  Google Scholar 

  • Scheinberg MA, Bezerra JB, Almeida FA, Silveira LA (1978) Cutaneous necrotising vasculitis induced by levamisole. Br Med J 1(6110):408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiller JH, Lindstrom M, Witt PL, Hank JA, Mahvi D, Wagner RJ, Sondel P, Borden EC (1991) Immunological effects of levamisole in vitro. J Immunother 10:297–306

    CAS  PubMed  Google Scholar 

  • Schneider S, Meys F (2011) Analysis of illicit cocaine and heroin samples seized in Luxembourg from 2005 to 2010. Forensic Sci Int 212:242–246

    CAS  PubMed  Google Scholar 

  • Schuermans Y (1975) Levamisole in rheumatoid arthritis. Lancet 1(7898):111

    CAS  PubMed  Google Scholar 

  • Schwarz SK, Puil E (1998) Analgesic and sedative concentrations of lignocaine shunt tonic and burst firing in thalamocortical neurones. Br J Pharmacol 124:1633–1642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seidlin M, Straus SE (1984) Treatment of mucocutaneous herpes simplex infections. Clin Dermatol 2:100–116

    CAS  PubMed  Google Scholar 

  • Selzer ME (1979) The effect of phenytoin on the action potential of a vertebrate spinal neuron. Brain Res 171:511–521

    CAS  PubMed  Google Scholar 

  • Sergienko EA, Millán JL (2010) High-throughput screening of tissue-nonspecific alkaline phosphatase for identification of effectors with diverse modes of action. Nat Protoc 5:1431–1439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER, Feinstein DL (2008) P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 5:33

    PubMed Central  PubMed  Google Scholar 

  • Shimizu N (1950) Histochemical studies on the phosphatase of the nervous system. J Comp Neurol 93:201–217

    CAS  PubMed  Google Scholar 

  • Simão AM, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P (2013) Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles’ biomimetics. Calcif Tissue Int 93:222–232

    PubMed Central  PubMed  Google Scholar 

  • Spector R (1978) Vitamin B6 transport in the central nervous system: in vivo studies. J Neurochem 30:881–887

    CAS  PubMed  Google Scholar 

  • Spector S, Munjal I, Schmidt DE (1998) Effects of the immunostimulant, levamisole, on opiate withdrawal and levels of endogenous opiate alkaloids and monoamine neurotransmitters in rat brain. Neuropsychopharmacology 19:417–427

    CAS  PubMed  Google Scholar 

  • Sperlágh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35:537–547

    PubMed  Google Scholar 

  • Spreafico F, Vecchi A, Mantovani A, Poggi A, Franchi G, Anaclerio A, Garattini S (1975) Characterization of the immunostimulants levamisole and tetramisole. Eur J Cancer 11:555–563

    CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millán JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33:11314–11322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stys PK (2013) Pathoetiology of multiple sclerosis: are we barking up the wrong tree? F1000Prime Rep 5:20

    Google Scholar 

  • Sugimura K, Mizutani A (1979) Histochemical and cytochemical studies of alkaline phosphatase activity in the synapses of rat brain. Histochemistry 61:123–129

    CAS  PubMed  Google Scholar 

  • Suzuki K, Yoshimura Y, Hisada Y, Matsumoto A (1994) Sensitivity of intestinal alkaline phosphatase to L-homoarginine and its regulation by subunit-subunit interaction. Jpn J Pharmacol 64:97–102

    CAS  PubMed  Google Scholar 

  • Symoens J, Veys E, Mielants M, Pinals R (1978) Adverse reactions to levamisole. Cancer Treat Rep 62:1721–1730

    CAS  PubMed  Google Scholar 

  • Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S (2014) Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch Dis Child 99:211–215

    PubMed  Google Scholar 

  • Tanphaichitr P, Tanphaichitr D, Sureeratanan J, Chatasingh S (1980) Treatment of nephrotic syndrome with levamisole. J Pediatr 96:490–493

    CAS  PubMed  Google Scholar 

  • Thienpont D, Vanparijs OF, Raeymaekers AH, Vandenberk J, Demoen JA, Allewijn FT, Marsboom RP, Niemegeers CJ, Schellekens KH, Janssen PA (1966) Tetramisole (R 8299), a new, potent broad spectrum anthelmintic. Nature 209:1084–1086

    CAS  PubMed  Google Scholar 

  • Toivanen A, Lassila O, Nordman E (1981) Lack of effect of levamisole on the immune function in melanoma patients. Cancer Immunol Immunother 10:191–195

    Google Scholar 

  • Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Sig 2:pe6

    Google Scholar 

  • Treurniet-Donker AD, Meischke-de Jongh ML, van Putten WL (1987) Levamisole as adjuvant immunotherapy in breast cancer. Cancer 59:1590–1593

    CAS  PubMed  Google Scholar 

  • Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1529

    CAS  PubMed  Google Scholar 

  • van Belle H (1972) Kinetics and inhibition of alkaline phosphatases from canine tissues. Biochim Biophys Acta 289:158–168

    PubMed  Google Scholar 

  • van Belle H (1976a) Kinetics and inhibition of rat and avian alkaline phosphatases. Gen Pharmacol 7:53–58

    Google Scholar 

  • van Belle H (1976b) Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem 22:972–976

    Google Scholar 

  • van der Ham M, Albersen M, de Koning TJ, Visser G, Middendorp A, Bosma M, Verhoeven-Duif NM, de Sain-van der Velden MG (2012) Quantification of vitamin B6 vitamers in human cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 712:108–114

    PubMed  Google Scholar 

  • Vandevelde M, Boring JG, Hoff EJ, Gingerich DA (1978) The effect of levamisole on the canine central nervous system. J Neuropathol Exp Neurol 37:165–173

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM, Van Nueten JM, Verbeuren TJ, Laduron PM (1977) Differential effects of the isomers of tetramisole on adrenergic neurotransmission in cutaneous veins of dog. J Pharmacol Exp Ther 200:127–140

    CAS  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    CAS  PubMed  Google Scholar 

  • Webster DJ, Whitehead RH, Richardson G, Hughes LE (1982) Levamisole: a double blind immunological study. Anticancer Res 2:29–32

    CAS  PubMed  Google Scholar 

  • Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann NY Acad Sci 1192:190–200

    CAS  PubMed  Google Scholar 

  • Whyte MP, Mahuren JD, Fedde KN, Cole FS, McCabe ER, Coburn SP (1988) Perinatal hypophosphatasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5′-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J Clin Invest 81:1234–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiebke EA, Grieshop NA, Loehrer PJ, Eckert GJ, Sidner RA (2003) Antitumor effects of 5-fluorouracil on human colon cancer cell lines: antagonism by levamisole. J Surg Res 111:63–69

    CAS  PubMed  Google Scholar 

  • Woestenborghs R, Michielsen L, Heykants J (1981) Determination of levamisole in plasma and animal tissues by gas chromatography with thermionic specific detection. J Chromatogr 224:25–32

    CAS  PubMed  Google Scholar 

  • Wu VC, Huang JW, Lien HC, Hsieh ST, Liu HM, Yang CC, Lin YH, Hwang JJ, Wu KD (2006) Levamisole-induced multifocal inflammatory leukoencephalopathy: clinical characteristics, outcome, and impact of treatment in 31 patients. Medicine 85:203–213

    CAS  PubMed  Google Scholar 

  • Yao SQ, Li ZZ, Huang QY, Li F, Wang ZW, Augusto E, He JC, Wang XT, Chen JF, Zheng RY (2012) Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem 123:100–112

    CAS  PubMed  Google Scholar 

  • Yokota T, Saito Y, Miyatake T (1994) Conduction slowing without conduction block of compound muscle and nerve action potentials due to sodium channel block. J Neurol Sci 124:220–224

    CAS  PubMed  Google Scholar 

  • Zakon HH (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc Natl Acad Sci USA 109(Suppl 1):10619–10625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Xiong W, Chu S, Sun C, Albensi BC, Parkinson FE (2012) Inhibition of hippocampal synaptic activity by ATP, hypoxia or oxygen-glucose deprivation does not require CD73. PLoS ONE 7:e39772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank the SARA service and particularly Gregory Marsal for animal care. We acknowledge Pr José Luis Millán for his useful comments on this work while it was in progress. This work was supported by CNRS (PICS 4331), by Hypophosphatasie Europe (grant No. 88461) and by PHC Egide (Balaton 17341 UE).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lionel G. Nowak or Caroline Fonta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nowak, L.G., Rosay, B., Czégé, D., Fonta, C. (2015). Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_12

Download citation

Publish with us

Policies and ethics