Skip to main content

Genotoxic Effects of Boron on Chickpea (Cicer arietinum L.) and Tomato (Solanum lycopersicum L.)

  • Chapter
  • 1167 Accesses

Abstract

This study elucidates the genotoxic effect of boron (B) on chickpea and tomato. Experimental results have revealed a sharp growth rate inhibitions on plants (23 % chickpea; 31 % tomato), starting from 5 ppm. B-induced growth inhibition was confirmed by DNA alterations detected by RAPD profiles changes. DNA alteration was clear at the beginning from 10 ppm B in chickpea. Tomato, as a tolerant species, shows high genomic stability against to high B. These preliminary findings support the effective usage of RAPD-PCR in investigations of genotoxic effects of B for these crops and then for others.

Dedicated to Dr. Irem Uzonur on her sad demise in 2013.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelis KJ, McGuffie M, Menke M, Schubert I (2000) Adaptation to alkylation damage in DNA measured by the comet assay. Environ Mol Mutagen 36:146–150

    Article  CAS  PubMed  Google Scholar 

  • Atienzar FA, Jha NA (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  PubMed  Google Scholar 

  • Babaoglu M, Gezgin S, Topal A, Sade B, Dural H (2004) Gypsophila sphaerocephala Fenzl ex Tchihat: a boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J Bot 28:273–278

    Google Scholar 

  • Cenkci S, Cigerci İH, Yıldız M, Ozay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Cervilla LM, Blasco B, Rios JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Soylemezoglu G, Inal A, Bagcı EG, Coban S, Sahin O (2006) Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Sci Hortic 110:279–284

    Article  CAS  Google Scholar 

  • Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Kekec G, Cosgun S (2015) Genotoxicity potentials of anionic and cationic amino acid-based surfactants. Toxicology and Industrial Health 31(4):377–385

    Article  PubMed  Google Scholar 

  • Kekec G, Sakcali MS, Uzonur I (2010) Assesment of genotoxic effects of boron on wheat (Triticum aestivum L.) and bean (Phaseolus vulgaris L.) by using RAPD analysis. Bull Environ Contam Toxicol 84(6):759–764

    Article  CAS  PubMed  Google Scholar 

  • Keles Y, Öncel I, Yenice N (2004) Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source. Plant and Soil 265:345–353

    Article  CAS  Google Scholar 

  • Khan F, Hakeem KR, Sidiqqui TO, Ahmad A (2013) RAPD markers associated with salt tolerance in soybean genotypes under salt stress. Appl Biochem Biotechnol 170(2):257–272

    Article  CAS  PubMed  Google Scholar 

  • Konuk M, Liman R, Cigerci İH (2007) Determination of genotoxic effect of boron on Allium cepa root meristematic cells. Pak J Bot 39:73–79

    Google Scholar 

  • Larsen LA (1988) Boron. In: Seiler HG, Sigel H (eds) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York/Basel, pp 129–141

    Google Scholar 

  • Liu W, Li P, Qi X, Zhou Q, Sun T, Yang Y (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yang Y, Zhou Q, Xie L, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Lovatt CJ, Dugger WM (1984) Boron. Biochemistry of the essential ultratrace elements. Plenum Press, New York, pp 389–421

    Book  Google Scholar 

  • Maas EV (1990) Crop salt tolerance. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE manual & reports on engineering practice, No. 71, New York, pp 262–304

    Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozuka K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 198:181–198

    Article  Google Scholar 

  • Ochiai K, Uemura S, Shimizu A, Okumoto Y, Matoh T (2008) Boron toxicity in rice (Oryza sativa L.). I. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity. Theor Appl Genet 117:125–133

    Article  CAS  PubMed  Google Scholar 

  • Osman GMA, Mekkawy AI, Verreth J, Wuertz S, Kloas W, Kirschbaum F (2008) Monitoring of DNA breakage in embryonic stages of the African Catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay. Environ Toxicol 23:679–687

    Article  CAS  PubMed  Google Scholar 

  • Oz MT, Yilmaz R, Eyidogan F, de Graff L, Yücel M, Oktem HA (2009) Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L.) leaves. Turk J Agric For 33:191–202

    CAS  Google Scholar 

  • Ozturk M, Sakcali S, Gucel S, Tombuloğlu H (2010) Boron and plants. In: Ashraf et al. (eds) Plant adaptation & phytoremediation. Springer, The Netherlands, pp 275–311

    Google Scholar 

  • Papadakis I, Dimassi A, Bosabalidis I, Therios A, Patakas, Giannakoula A (2004) Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Sci 166:539–547

    Article  CAS  Google Scholar 

  • Reinecke SA, Reinecke AJ (2004) The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch Environ Contam Toxicol 46(2):208–215

    CAS  PubMed  Google Scholar 

  • Rong ZY, Yin HW (2004) A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicol Environ Saf 58:96–103

    Article  CAS  PubMed  Google Scholar 

  • Sakcali MS, Kekec G, Uzonur I, Alpsoy L, Tombuloglu H (2015) Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.). Toxicology and Industrial Health 31(8):712–720

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner H, Kassie F, Knasmuller S (1999) Tradescantia-micronucleus assay for the assessment of the clastogenicity of Austrian water. Mutat Res 426:113–116

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiol. The Benjamin/Cummings Publishing Company Inc., Redwood City

    Google Scholar 

  • Tombuloglu H, Semizoglu N, Sakcali MS, Kekec G (2012) Boron induced expression of some stress-related genes in tomato. Chemosphere 86:433–438

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu G, Tombuloglu H, Sakcali MS, Unver T (2015) High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene 557:71–81

    Article  CAS  PubMed  Google Scholar 

  • Türe C, Bell WR (2004) Plant distribution and its relationship to extractable boron in naturally-occurring high boron soils in Turkey. Israil J Plant Sci 52:125–132

    Article  Google Scholar 

  • Uzonur I, Abasiyanik MF, Bostanci B, Eyidemir M, Ocba N, Yanik C, Petek M (2004) Re-exploring planaria as a model organism for genotoxicity monitoring by an ‘improved random amplified polymorphic DNA’ approach. Fresenıus Environ Bull 13:1420–1426

    CAS  Google Scholar 

  • Versar Inc (1975) Preliminary investigation of effects on the environment of boron, indium, nickel, selenium, tin, vanadium and their compounds, volume 1: boron. Springfield, Virginia, Versar, Inc. (Prepared for the US Environmental Protection Agency, Washington, DC) (EPA 560/2-75-005a)

    Google Scholar 

  • Welsh J, McClelland M (1990) Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acid Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams J, Kubelik AR, Livak KJ (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Fatih University under the project number P50030701.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guzin Tombuloglu or Huseyin Tombuloglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tombuloglu, G., Tombuloglu, H., Sakcali, M.S. (2015). Genotoxic Effects of Boron on Chickpea (Cicer arietinum L.) and Tomato (Solanum lycopersicum L.). In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_9

Download citation

Publish with us

Policies and ethics