Skip to main content

Nickel Metal Uptake and Metal-Specific Stress Alleviation in a Perennial Desert Grass Cenchrus ciliaris

  • Chapter

Abstract

Associations of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) with plant roots are known to function from Stress Alleviation to Bioremediation in metal polluted soils. We have studied uptake and accumulation of Nickel metal in a perennial grass, Cenchrus ciliaris, from Cholistan desert in the presence or the absence of mycorrhizal colonization of its roots by a fungus Glomous mosseae. Our results show that Cenchrus ciliaris has a tendency to absorb and tolerate the Nickel metal present in the contaminated soils and its shoots accumulate more Nickel than its roots. Introduction of Nickel in the plant rhizosphere generates stress that at some concentrations creates anatomical changes both at macro and microscopic levels. Such concentrations also adversely affect fungal colonization. Nature and extent of the stress directly correlate with the concentration of the Nickel metal in the soil. Metal exposure alone or in combination with the mycorrhiza produces specific changes in some enzyme activities both in the root and the shoot tissues suggesting that these changes are involved in progression/regression of the metal-specific stress. While Glomous mosseae association is not required for Nickel uptake and accumulation by Cenchrus ciliaris, it appears to be helpful in alleviating the stress exerted by the presence of this metal in soil. We conclude that the perennial desert grass Cenchrus ciliaris is capable of mobilizing and up taking Nickel metal from soil, its transportation from roots to shoots and is equipped with the machinery that helps tolerate the metal-specific stress to some extent.

The original version of this chapter was revised: The affiliation of the author M. Ashraf’s are corrected. The erratum to this chapter is available at: http://dx.doi.org/10.1007/978-94-017-7194-8_21

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-017-7194-8_21

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggangan NS, Dell B, Malajczuk N (1998) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake. Geoderma 84(1–3):15–27

    Article  CAS  Google Scholar 

  • Ajungla T, Sharma GD, Dkhar MS (2003) Heavy metal toxicity on dehydrogenase activity on rhizospheric soil of ectomycorrhizal pine seedlings in field condition. J Environ Biol 24(4):461–463

    CAS  PubMed  Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34(6):2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and droughtstress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Andrade SAL, Gratão PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370

    Article  CAS  PubMed  Google Scholar 

  • AOAC (1995) AOAC official method 985.26: solids (Total) in processed tomato products. In: Official methods of analysis of AOAC International. AOAC International, Arlington

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Borges R, Chaney W (1989) Root temperature affects mycorrhizal efficacy in Fraxinus pennsylvanica Marsh. New Phytol 112:411–417

    Article  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70(7):1264–1272

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry MS, Rahman SU, Ismaiel MS, Sarwar G, Saeed B, Nasim FH (2009) Coexistence of arbuscular mycorrhizae and dark septate endophytic fungi in an undisturbed and a disturbed site of an arid ecosystem. Symbiosis 49:19–28

    Article  Google Scholar 

  • Chen B, Tang X, Zhu Y, Christie P (2005a) Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Sci China C Life Sci 48(Suppl 1):156–164

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wu C, Tang J, Hu S (2005b) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60(5):665–671

    Article  CAS  PubMed  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14(3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65(2):718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13(4):199–204

    Article  CAS  PubMed  Google Scholar 

  • Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92(2):364–368. doi:10.1111/j.1399-3054.1994.tb05349.x

    Article  CAS  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol 95(2):247–261. doi:10.1111/j.1469-8137.1983.tb03491.x

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Mermut A (2015) Soil remediation and plants: prospects and challenges. Academic Press, Elsevier, New York, p 724

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Hovsepyan A, Greipsson S (2004) Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. Int J Phytoremediation 6(4):305–321

    Article  CAS  PubMed  Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, van Berkum P (1995) Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. J Environ Qual 24(6):1199–1204

    Article  CAS  Google Scholar 

  • Killham K, Firestone M (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant and Soil 72(1):39–48

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole H Jr (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci Soc Am J 43(5):976–980

    Article  CAS  Google Scholar 

  • Liu SL, Luo YM, Cao ZH, Wu LH, Ding KQ, Christie P (2004) Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ Geochem Health 26(2–3):285–293

    Article  CAS  PubMed  Google Scholar 

  • Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, Puptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244

    Article  PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162(6):634–649

    Article  CAS  PubMed  Google Scholar 

  • Quilambo O (2000) Functioning of peanut (Arachis hypogeae L.) under nutrient deficiency and drought stress in relation of symbiotic associations. University of Groningen, the Netherlands., Van Denderen, B.V.Groningen

    Google Scholar 

  • Rao A, Arshad M, Shafiq M (1989) Perennial grass germplasm of Cholistan desert and its phytosociology. Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur

    Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167(3):869–880

    Article  CAS  PubMed  Google Scholar 

  • Sabir M, Hakeem KR, Aziz T, Zia-ur-Rehman M, Rashid I, Ozturk M (2014) High Ni levels in soil can modify growth performance and mineral status of wheat cultivars. Clean Soil Air Water 42:1263–1271

    Article  CAS  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109(Pt 7):795–798

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474

    Article  CAS  Google Scholar 

  • Switzer R, Garrity L (1999) Experimental biochemistry, 3rd edn. W. H. Freeman and Company, New York

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders JR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Vassilev A, Schwitzguebel JP, Thewys T, Van Der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. ScientificWorldJournal 4:9–34

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz-ul Hassan Nasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nasim, Fu.H., Khalil, R., Sumreen, A., Chaudhry, M.S., Ashraf, M. (2015). Nickel Metal Uptake and Metal-Specific Stress Alleviation in a Perennial Desert Grass Cenchrus ciliaris . In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_5

Download citation

Publish with us

Policies and ethics